Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013, Article ID 818731, 19 pages
http://dx.doi.org/10.1155/2013/818731
Research Article

Multiproject Resources Allocation Model under Fuzzy Random Environment and Its Application to Industrial Equipment Installation Engineering

1Business School, Sichuan University, Chengdu 610064, China
2State Keylaboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China

Received 12 July 2013; Accepted 7 October 2013

Academic Editor: T. Warren Liao

Copyright © 2013 Jun Gang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch, “Resource-constrained project scheduling: notation, classification, models, and methods,” European Journal of Operational Research, vol. 112, no. 1, pp. 3–41, 1999. View at Google Scholar · View at Scopus
  2. S. E. Fricke and A. J. Shenhar, “Managing multiple engineering projects in a manufacturing support environment,” IEEE Transactions on Engineering Management, vol. 47, no. 2, pp. 258–268, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Engwall and A. Jerbrant, “The resource allocation syndrome: the prime challenge of multi-project management?” International Journal of Project Management, vol. 21, no. 6, pp. 403–409, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Kim, Y. Yun, J. Yoon, M. Gen, and G. Yamazaki, “Hybrid genetic algorithm with adaptive abilities for resource-constrained multiple project scheduling,” Computers in Industry, vol. 56, no. 2, pp. 143–160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Ben-Zvi and T. G. Lechler, “Resource allocation in multi-project environments: planning versus execution strategies,” in Proceedings of the PICMET Technology Management in the Energy-Smart World, August 2011. View at Scopus
  6. J. Xu and Z. Zhang, “A fuzzy random resource-constrained scheduling model with multiple projects and its application to a working procedure in a large-scale water conservancy and hydropower construction project,” Journal of Scheduling, vol. 15, no. 2, pp. 253–272, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  7. K. K. Yang and C. C. Sum, “An evaluation of due date, resource allocation, project release, and activity scheduling rules in a multiproject environment,” European Journal of Operational Research, vol. 103, no. 1, pp. 139–154, 1997. View at Google Scholar · View at Scopus
  8. P. Jennergren and W. Müller, “Simulation experiments of resource-allocation decisions in two-level organizations,” Social Science Research, vol. 2, no. 4, pp. 333–352, 1973. View at Google Scholar · View at Scopus
  9. K. K. Yang and C. C. Sum, “A comparison of resource allocation and activity scheduling rules in a dynamic multi-project environment,” Journal of Operations Management, vol. 11, no. 2, pp. 207–218, 1993. View at Google Scholar · View at Scopus
  10. Y. R. Fan and G. H. Huang, “A robust two-step method for solving interval linear programming problems within an environmental management context,” Journal of Environmental Informatics, vol. 19, no. 1, pp. 1–9, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Golenko-Ginzburg and A. Gonik, “Stochastic network project scheduling with non-consumable limited resources,” International Journal of Production Economics, vol. 48, no. 1, pp. 29–37, 1997. View at Google Scholar · View at Scopus
  12. D. Golenko-Ginzburg and A. Gonik, “A heuristic for network project scheduling with random activity durations depending on the resource allocation,” International Journal of Production Economics, vol. 55, no. 2, pp. 149–162, 1998. View at Google Scholar · View at Scopus
  13. I. Cohen, B. Golany, and A. Shtub, “Resource allocation in stochastic, finite-capacity, multi-project systems through the cross entropy methodology,” Journal of Scheduling, vol. 10, no. 3, pp. 181–193, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  14. J. Bidot, V. Thierry, L. Philippe, and J. Christopher, “A theoretic and practical framework for scheduling in a stochastic environment,” Journal of Scheduling, vol. 10, pp. 41–65, 2008. View at Google Scholar
  15. L. A. Zadeh, “Fuzzy sets,” Information and Computation, vol. 8, pp. 338–353, 1965. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. K. M. Mjelde, “Fuzzy resource allocation,” Fuzzy Sets and Systems, vol. 19, no. 3, pp. 239–250, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. H. Zhang and C. M. Tam, “Fuzzy decision-making for dynamic resource allocation,” Construction Management and Economics, vol. 21, no. 1, pp. 31–41, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Herroelen and R. Leus, “Project scheduling under uncertainty: survey and research potentials,” European Journal of Operational Research, vol. 165, no. 2, pp. 289–306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Masmoudi, “Project scheduling under uncertainty using fuzzy modelling and solving techniques,” Engineering Applications of Artificial Intelligence, vol. 26, no. 1, pp. 135–149, 2013. View at Publisher · View at Google Scholar
  20. H. Kwakernaak, “Fuzzy random variables-I. definitions and theorems,” Information Sciences, vol. 15, no. 1, pp. 1–29, 1978. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  21. M. A. Abo-Sinna and I. A. Baky, “Interactive balance space approach for solving multi-level multi-objective programming problems,” Information Sciences, vol. 177, no. 16, pp. 3397–3410, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Mishra, “Weighting method for bi-level linear fractional programming problems,” European Journal of Operational Research, vol. 183, no. 1, pp. 296–302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. W. F. Bialas and M. H. Karwan, “Two-level linear programming,” Management Science, vol. 30, no. 8, pp. 1004–1020, 1984. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  24. J. Fortuny-Amat and B. McCarl, “A representation and economic interpretation of a two-level programming problem,” Operational Research Society Journal, vol. 32, no. 9, pp. 783–792, 1981. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  25. U. P. Wen and S. F. Lin, “Finding an efficient solution to linear bilevel programming problem: an effective approach,” Journal of Global Optimization, vol. 8, no. 3, pp. 295–306, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  26. J. Xu and Y. Liu, “Multi-objective decision making model under fuzzy random environment and its application to inventory problems,” Information Sciences, vol. 178, no. 14, pp. 2899–2914, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Xu, F. Yan, and S. Li, “Vehicle routing optimization with soft time windows in a fuzzy random environment,” Transportation Research Part E, vol. 47, no. 6, pp. 1075–1091, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Roghanian and K. Kamandanipour, “A fuzzy-random programming for integrated closed-loop logistics network design by using prioritybased genetic algorithm,” International Journal of Industrial Engineering Computations, vol. 4, no. 1, pp. 139–154, 2013. View at Publisher · View at Google Scholar
  29. J. Xu, Y. Tu, and Z. Zeng, “Bi-level optimization of regional water resources allocation problem under fuzzy random environment,” Journal of Water Resources Planning and Management, vol. 139, no. 3, pp. 246–264, 2013. View at Publisher · View at Google Scholar
  30. M. Mori and C. C. Tseng, “A genetic algorithm for multi-mode resource constrained project scheduling problem,” European Journal of Operational Research, vol. 100, no. 1, pp. 134–141, 1997. View at Google Scholar · View at Scopus
  31. A. Charnes and W. W. Cooper, “Chance-constrained programming,” Management Science, vol. 6, pp. 73–79, 1959. View at Google Scholar · View at MathSciNet
  32. K. Aǧpak and H. Gökçen, “A chance-constrained approach to stochastic line balancing problem,” European Journal of Operational Research, vol. 180, no. 3, pp. 1098–1115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Xu and X. Zhou, Fuzzy-Like Multiple Objective Decision Making, Springer, 2011.
  34. M. L. Puri and D. A. Ralescu, “Fuzzy random variables,” Journal of Mathematical Analysis and Applications, vol. 114, no. 2, pp. 409–422, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  35. O. Ben-Ayed and C. E. Blair, “Computational difficulties of bilevel linear programming,” Operations Research, vol. 38, no. 3, pp. 556–560, 1990. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  36. P. Hansen, B. Jaumard, and G. Savard, “New branch-and-bound rules for linear bilevel programming,” Society for Industrial and Applied Mathematics, vol. 13, no. 5, pp. 1194–1217, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  37. R. J. Kuo and C. C. Huang, “Application of particle swarm optimization algorithm for solving bi-level linear programming problem,” Computers and Mathematics with Applications, vol. 58, no. 4, pp. 678–685, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  38. T. Zhang, T. Hu, Y. Zheng, and X. Guo, “An improved particle swarm optimization for solving bilevel multiobjective programming problem,” Journal of Applied Mathematics, vol. 2012, Article ID 626717, 13 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  39. R. Kumar and Jyotishree, “Novel encoding scheme in genetic algorithms for better fitness,” International Journal of Engineering and Advanced Technology, vol. 1, no. 6, pp. 214–219, 2012. View at Google Scholar
  40. K. Bouleimen and H. Lecocq, “A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version,” European Journal of Operational Research, vol. 149, no. 2, pp. 268–281, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Zhang, C. M. Tam, and H. Li, “Multimode project scheduling based on particle swarm optimization,” Computer-Aided Civil and Infrastructure Engineering, vol. 21, no. 2, pp. 93–103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Kim, M. Gen, and M. Kim, “Adaptive genetic algorithms for multi-recource constrained project scheduling problem with multiple modes,” International Journal of Innovative Computing, Information and Control, vol. 2, no. 1, pp. 41–49, 2006. View at Google Scholar
  43. G. M. Wang, Z. P. Wan, X. J. Wang, and Y. L. Chen, “Genetic algorithms for solving linear bilevel programming,” in Proceedings of the 6th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT '05), pp. 920–924, December 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Guo, Y. P. Li, G. H. Huang, X. W. Wang, and C. Dai, “Development of an interval-based evacuation management model in response to nuclear-power plant accident,” Journal of Environmental Informatics, vol. 20, no. 2, pp. 58–66, 2012. View at Google Scholar