Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013, Article ID 841780, 15 pages
http://dx.doi.org/10.1155/2013/841780
Research Article

A Hybrid Multiobjective Differential Evolution Algorithm and Its Application to the Optimization of Grinding and Classification

1School of Information Science and Engineering, Central South University, Changsha 410083, China
2Department of Mathematics & Statistics, Curtin University, Perth, WA 6845, Australia

Received 19 July 2013; Accepted 5 September 2013

Academic Editor: Dewei Li

Copyright © 2013 Yalin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Mitra and R. Gopinath, “Multiobjective optimization of an industrial grinding operation using elitist nondominated sorting genetic algorithm,” Chemical Engineering Science, vol. 59, no. 2, pp. 385–396, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Yu, T. Y. Chai, and X. C. Luo, “Multiobjective production planning optimization using hybrid evolutionary algorithms for mineral processing,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 4, pp. 487–514, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Y. Ma, W. H. Gui, Y. L. Wang, and C. H. Yang, “Dynamic optimization control for grinding and classification process,” Control and Decision, vol. 27, no. 2, pp. 286–290, 2012 (Chinese). View at Google Scholar · View at Scopus
  4. F. Y. Edgeworth, Mathematical Physics: An Essay on the Application of Mathematics to the Moral Sciences, C. Kegan Paul & Company, London, UK, 1881.
  5. V. Pareto, Cours d'Economie Politique, F. Rouge, Lausanne, Switzerland, 1896.
  6. X. F. Chen, W. H. Gui, Y. L. Wang, and L. Cen, “Multi-step optimal control of complex process: a genetic programming strategy and its application,” Engineering Applications of Artificial Intelligence, vol. 17, no. 5, pp. 491–500, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. C. A. C. Coello, “Evolutionary multi-objective optimization: a historical view of the field,” IEEE Computational Intelligence Magazine, vol. 1, no. 1, pp. 28–36, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. C. M. Fonesca and P. J. Fleming, “Genetic algorithms for multi objective optimization: formulation, discussion and generalization,” in Proceedings of the 5th International Conference on Genetic Algorithms, pp. 415–423, Morgan Kaufmann, San Mateo, Calif, USA, 1993.
  10. S. Sengupta, S. Das, M. Nasir, A. V. Vasilakos, and W. Pedrycz, “Energy-efficient differentiated coverage of dynamic objects using an improved evolutionary multi-objective optimization algorithm with fuzzy-dominance,” in Proceedings of IEEE Congress on Evolutionary Computation, pp. 1–8, IEEE Press, Brisbane, Australia, 2012. View at Publisher · View at Google Scholar
  11. K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution a Practical Approach to Global Optimization, Springer, Berlin, Germany, 2005.
  12. W. Y. Gong and Z. H. Cai, “An improved multiobjective differential evolution based on Pareto-adaptive ε-dominance and orthogonal design,” European Journal of Operational Research, vol. 198, no. 2, pp. 576–601, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. X. H. Zeng, W. K. Wong, and S. Y. Leung, “An operator allocation optimization model for balancing control of the hybrid assembly lines using Pareto utility discrete differential evolution algorithm,” Computers and Operations Research, vol. 39, no. 5, pp. 1145–1159, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Al-Ani, A. Alsukker, and R. N. Khushaba, “Feature subset selection using differential evolution and a wheel based search strategy,” Swarm and Evolutionary Computation, vol. 9, pp. 15–26, 2013. View at Publisher · View at Google Scholar
  16. G. Y. Li and M. G. Liu, “The summary of differential evolution algorithm and its improvements,” in Proceedings of the 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE '10), pp. V3153–V3156, Chengdu, China, August 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. H. A. Abbass, “The self-adaptive Pareto differential evolution algorithm,” in Proceedings of the IEEE Congress on Evolutionary Computation, pp. 831–836, IEEE Press, Honolulu, Hawaii, USA, May 2002. View at Publisher · View at Google Scholar
  18. N. K. Madavan, “Multiobjective optimization using a Pareto differential evolution approach,” in Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1145–1150, IEEE Press, Honolulu, Hawaii, USA, May 2002. View at Publisher · View at Google Scholar
  19. F. Xue, A. C. Sanderson, and R. J. Graves, “Pareto-based multi-objective differential evolution,” in Proceedings of the IEEE Congress on Evolutionary Computation,, pp. 862–869, IEEE Press, Piscataway, NJ, USA, December 2003. View at Publisher · View at Google Scholar
  20. T. Robic and B. Filipi, “DEMO: differential evolution for multiobjective optimization,” in Evolutionary Multi-Criterion Optimization, pp. 520–533, Springer, Berlin, Germany, 2005. View at Google Scholar · View at Zentralblatt MATH
  21. V. L. Huang, A. K. Qin, P. N. Suganthan, and M. F. Tasgetiren, “Multi-objective optimization based on self-adaptive differential evolution algorithm,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '07), pp. 3601–3608, IEEE Press, Singapore, September 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. V. L. Huang, S. Z. Zhao, R. Mallipeddi, and P. N. Suganthan, “Multi-objective optimization using self-adaptive differential evolution algorithm,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '09), pp. 190–194, IEEE Press, Trondheim, Norway, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. A. Adeyemo and F. A. O. Otieno, “Multi-objective differential evolution algorithm for solving engineering problems,” Journal of Applied Sciences, vol. 9, no. 20, pp. 3652–3661, 2009. View at Publisher · View at Google Scholar
  24. Y. Wang and Z. Cai, “Combining multiobjective optimization with differential evolution to solve constrained optimization problems,” IEEE Transactions on Evolutionary Computation, vol. 16, no. 1, pp. 117–134, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Homaifar, C. X. Qi, and S. H. Lai, “Constrained optimization via genetic algorithms,” Simulation, vol. 62, no. 4, pp. 242–253, 1994. View at Publisher · View at Google Scholar · View at Scopus
  26. J. A. Joines and C. R. Houck, “On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's,” in Proceedings of the 1st IEEE Conference on Evolutionary Computation, pp. 579–584, Orlando, Fla, USA, June 1994. View at Scopus
  27. F. Jiménez and J. L. Verdegay, “Evolutionary techniques for constrained optimization problems,” in Proceedings of the 7th European Congress on Intelligent Techniques and Soft Computing (EUFIT '99), Aachen, Germany, 1999.
  28. C. Sun, J. Zeng, and J. Pan, “An improved vector particle swarm optimization for constrained optimization problems,” Information Sciences, vol. 181, no. 6, pp. 1153–1163, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. Michalewicz and M. Schoenauer, “Evolutionary algorithms for constrained parameter optimization problems,” Evolutionary Computation, vol. 4, no. 1, pp. 1–32, 1996. View at Publisher · View at Google Scholar · View at Scopus
  30. C. A. C. Coello and A. D. Christiansen, “Moses: a multiobjective optimization tool for engineering design,” Engineering Optimization, vol. 31, no. 1–3, pp. 337–368, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. G. Woldesenbet, G. G. Yen, and B. G. Tessema, “Constraint handling in multiobjective evolutionary optimization,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 3, pp. 514–525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. J. A. Nelder and R. Mead, “A simplex method for function minimization,” The Computer Journal, vol. 7, no. 4, pp. 308–313, 1965. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  33. D. A. van Veldhuizen and G. B. Lamont, “Multiobjective evolutionary algorithms: analyzing the state-of-the-art,” Evolutionary Computation, vol. 8, no. 2, pp. 125–147, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Farmani, D. A. Savic, and G. A. Walters, “Evolutionary multi-objective optimization in water distribution network design,” Engineering Optimization, vol. 37, no. 2, pp. 167–183, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Deb and T. Goel, Controlled Elitist Non-Dominated Sorting Genetic Algorithms for Better Convergence, Springer, Berlin, Germany, 2001.
  36. Y. J. Lai, T. Y. Liu, and C. L. Hwang, “Topsis for MODM,” European Journal of Operational Research, vol. 76, no. 3, pp. 486–500, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus