Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013 (2013), Article ID 879078, 9 pages
http://dx.doi.org/10.1155/2013/879078
Research Article

Applying Hybrid PSO to Optimize Directional Overcurrent Relay Coordination in Variable Network Topologies

1Department of Electrical Engineering, St. John’s University, 499, Section 4, Tam King Road, Tamsui District, New Taipei 25135, Taiwan
2Department of Computer Science and Information Engineering, St. John’s University, 499, Section 4, Tam King Road, Tamsui District, New Taipei 25135, Taiwan
3Graduate Institute of Computer and Communication Engineering, National Taipei University of Technology, No. 1, Section 3, Chunghsiao E. Road, Taipei 10608, Taiwan

Received 4 December 2012; Revised 20 January 2013; Accepted 25 January 2013

Academic Editor: Frank Werner

Copyright © 2013 Ming-Ta Yang and An Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. M. Anderson, Power System Protection, McGraw-Hill, New York, NY, USA, 1999. View at Zentralblatt MATH
  2. A. J. Urdaneta, R. Nadira, and L. G. Perez Jimenez, “Optimal coordination of directional overcurrent relays in interconnected power systems,” IEEE Transactions on Power Delivery, vol. 3, pp. 903–911, 1988. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Birla, R. P. Maheshwari, and H. O. Gupta, “A new nonlinear directional overcurrent relay coordination technique, and banes and boons of near-end faults based approach,” IEEE Transactions on Power Delivery, vol. 21, no. 3, pp. 1176–1182, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. A. S. Noghabi, J. Sadeh, and H. R. Mashhadi, “Considering different network topologies in optimal overcurrent relay coordination using a hybrid GA,” IEEE Transactions on Power Delivery, vol. 24, no. 4, pp. 1857–1863, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. S. Noghabi, H. R. Mashhadi, and J. Sadeh, “Optimal coordination of directional overcurrent relays considering different network topologies using interval linear programming,” IEEE Transactions on Power Delivery, vol. 25, no. 3, pp. 1348–1354, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. H. A. Abyaneh, M. Al-Dabbagh, H. K. Karegar, S. H. H. Sadeghi, and R. A. J. Khan, “A new optimal approach for coordination of overcurrent relays in interconnected power systems,” IEEE Transactions on Power Delivery, vol. 18, no. 2, pp. 430–435, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. S. S. Rao, Optimization: Theory and Applications, Halsted Press, New York, NY, USA, 1984. View at Zentralblatt MATH · View at MathSciNet
  8. P. P. Bedekar and S. R. Bhide, “Optimum coordination of directional overcurrent relays using the hybrid GA-NLP approach,” IEEE Transactions on Power Delivery, vol. 26, no. 1, pp. 109–119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proceedings of the 6th International Symposium on Micro Machine and Human Science, pp. 39–43, Nagoya, Japan, October 1995. View at Scopus
  10. Y. del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J. C. Hernandez, and R. G. Harley, “Particle swarm optimization: basic concepts, variants and applications in power systems,” IEEE Transactions on Evolutionary Computation, vol. 12, no. 2, pp. 171–195, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Y. Wu, “Solving constrained global optimization problems by using hybrid evolutionary computing and artificial life approaches,” Mathematical Problems in Engineering, vol. 2012, Article ID 841410, 36 pages, 2012. View at Publisher · View at Google Scholar
  12. Y. Kao, M. H. Chen, and Y. T. Huang, “A Hybrid algorithm based on ACO and PSO for capacitated vehicle routing problems,” Mathematical Problems in Engineering, vol. 2012, Article ID 726564, 17 pages, 2012. View at Publisher · View at Google Scholar
  13. T. Zhang, T. Hu, Y. Zheng, and X. Guo, “An improved particle swarm optimization for solving bilevel multiobjective programming problem,” Journal of Applied Mathematics, vol. 2012, Article ID 626717, 13 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. M. M. Mansour, S. F. Mekhamer, and N. E. S. El-Kharbawe, “A modified particle swarm optimizer for the coordination of directional overcurrent relays,” IEEE Transactions on Power Delivery, vol. 22, no. 3, pp. 1400–1410, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. H. H. Zeineldin, E. F. El-Saadany, and M. M. A. Salama, “Optimal coordination of overcurrent relays using a modified particle swarm optimization,” Electric Power Systems Research, vol. 76, no. 11, pp. 988–995, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Computer Journal, vol. 7, pp. 308–313, 1965. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  17. P. Chootinan and A. Chen, “Constraint handling in genetic algorithms using a gradient-based repair method,” Computers and Operations Research, vol. 33, no. 8, pp. 2263–2281, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  18. A. Liu and M. T. Yang, “A new hybrid Nelder-Mead particle swarm optimization for coordination optimization of directional overcurrent relays,” Mathematical Problems in Engineering, vol. 2012, Article ID 456047, 18 pages, 2012. View at Publisher · View at Google Scholar
  19. A. Liu, E. Zahara, and M. -T. Yang, “A modified NM-PSO method for parameter estimation problems of models,” Journal of Applied Mathematics, vol. 2012, Article ID 530139, 12 pages, 2012. View at Publisher · View at Google Scholar
  20. A. J. Urdaneta, L. G. Pérez, and H. Restrepo, “Optimal coordination of directional overcurrent relays considering dynamic changes in the network topology,” IEEE Transactions on Power Delivery, vol. 12, no. 4, pp. 1458–1464, 1997. View at Publisher · View at Google Scholar · View at Scopus