Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013 (2013), Article ID 925141, 12 pages
http://dx.doi.org/10.1155/2013/925141
Research Article

Biological Invasion and Coexistence in Intraguild Predation

1School of Mathematics and Computer Science, Northwest University for Nationalities, Lanzhou 730030, China
2Department of Mathematics, Xidian University, Xi'an 710071, China

Received 28 August 2012; Accepted 13 December 2012

Academic Editor: Julián López-Gómez

Copyright © 2013 Wenting Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Hengeveld, Dynamics of Biological Invasions, Chapman & Hall, London, UK, 1989.
  2. A. Hastings, “Models of spatial spread: a synthesis,” Biological Conservation, vol. 78, no. 1-2, pp. 143–148, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University Press, Oxford, UK, 1997.
  4. J. Frantzen and F. van den Bosch, “Spread of organisms: can travelling and dispersive waves be distinguished?” Basic and Applied Ecology, vol. 1, no. 1, pp. 83–92, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. T. H. Keitt, M. A. Lewis, and R. D. Holt, “Allee effects, invasion pinning, and species' borders,” American Naturalist, vol. 157, no. 2, pp. 203–216, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. D. A. Holway, A. V. Suarez, and T. J. Case, “Loss of intraspecific aggression in the success of a widespread invasive social insect,” Science, vol. 282, no. 5390, pp. 949–952, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Diamond and T. J. Case, “Overview: introductions, extinctions, exterminations and invasions,” in Community Ecology, J. Diamond and T. J. Case, Eds., pp. 65–79, Harper & Row, San Francisco, Calif, USA, 1986. View at Google Scholar
  8. J. T. A. Dick, “Post-invasion amphipod communities of Lough Neagh, Northern Ireland: influences of habitat selection and mutual predation,” Journal of Animal Ecology, vol. 65, no. 6, pp. 756–767, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. C. MacNeil and J. Prenter, “Differential microdistributions and interspecific interactions in coexisting native and introduced Gammarus spp. (Crustacea: Amphipoda),” Journal of Zoology, vol. 251, no. 3, pp. 377–384, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. T. E. Cottrell and K. V. Yeargan, “Intraguild predation between an introduced lady beetle, Harmonia axyridis (Coleoptera: Coccinellidae), and a native lady beetle, Coleomegilla maculata (Coleoptera: Coccinellidae),” Journal of the Kansas Entomological Society, vol. 71, no. 2, pp. 159–163, 1998. View at Google Scholar · View at Scopus
  11. G. Woodward and A. G. Hildrew, “Invasion of a stream food web by a new top predator,” Journal of Animal Ecology, vol. 70, no. 2, pp. 273–288, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. W. E. Snyder, G. M. Clevenger, and S. D. Eigenbrode, “Intraguild predation and successful invasion by introduced ladybird beetles,” Oecologia, vol. 140, no. 4, pp. 559–565, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. R. D. Holt and G. A. Polis, “A theoretical framework for intraguild predation,” American Naturalist, vol. 149, no. 4, pp. 745–764, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. S. D. Mylius, K. Klumpers, A. M. de Roos, and L. Persson, “Impact of intraguild predation and stage structure on simple communities along a productivity gradient,” American Naturalist, vol. 158, no. 3, pp. 259–276, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. S. L. Pimm and J. H. Lawton, “On feeding on more than one trophic level,” Nature, vol. 275, no. 5680, pp. 542–544, 1978. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Diehl and M. Feißel, “Effects of enrichment on three-level food chains with omnivory,” American Naturalist, vol. 155, no. 2, pp. 200–218, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Diehl, “The evolution and maintenance of omnivory: dynamic constraints and the role of food quality,” Ecology, vol. 84, no. 10, pp. 2557–2567, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Tanabe and T. Namba, “Omnivory creates chaos in simple food web models,” Ecology, vol. 86, no. 12, pp. 3411–3414, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Arim and P. A. Marquet, “Intraguild predation: a widespread interaction related to species biology,” Ecology Letters, vol. 7, no. 7, pp. 557–564, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. E. E. Werner and J. F. Gilliam, “The ontogenetic niche and species interactions in size-structured populations,” Annual Review of Ecology and Systematics, vol. 15, pp. 393–425, 1984. View at Google Scholar · View at Scopus
  21. P. Byström, L. Persson, and E. Wahlström, “Competing predators and prey: juvenile bottlenecks in whole-lake experiments,” Ecology, vol. 79, no. 6, pp. 2153–2167, 1998. View at Google Scholar · View at Scopus
  22. S. C. Walls and M. C. Williams, “The effect of community composition on persistence of prey with their predators in an assemblage of pond-breeding amphibians,” Oecologia, vol. 128, no. 1, pp. 134–141, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. W. H. Day, D. R. Prokrym, D. R. Ellis, and R. J. Chianese, “The known distribution of the predator Propylea quatuordecimpunctata (Coleoptera: Coccinellidae) in the United States, and thoughts on the origin of this species and five other exotic lady beetles in eastern North America,” Entomological News, vol. 105, no. 4, pp. 244–256, 1994. View at Google Scholar · View at Scopus
  24. W. L. Tedders and P. W. Schaefer, “Release and establishment of Harmonia axyridis (Coleoptera: Cocchinellidae) in the southeastern United States,” Entomological News, vol. 105, no. 4, pp. 228–243, 1994. View at Google Scholar · View at Scopus
  25. A. G. Wheeler Jr. and C. A. Stoops, “Status and spread of the palearctic lady beetles Hippodamia variegata and Propylea quatuordecimpunctata (Coleoptera: Coccinellidae) in Pennsylvania, 1993–1995,” Entomological News, vol. 107, no. 5, pp. 291–298, 1996. View at Google Scholar · View at Scopus
  26. N. Elliott, R. Kieckhefer, and W. Kauffman, “Effects of an invading coccinellid on native coccinellids in an agricultural landscape,” Oecologia, vol. 105, no. 4, pp. 537–544, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. M. W. Brown and S. S. Miller, “Coccinellidae (Coleoptera) in apple orchards of eastern West Virginia and the impact of invasion by Harmonia axyridis,” Entomological News, vol. 109, no. 2, pp. 136–142, 1998. View at Google Scholar · View at Scopus
  28. N. Osawa, “Population field studies of the aphidophagous ladybird beetle Harmonia axyridis (Coleoptera: Coccinellidae): life tables and key factor analysis,” Researches on Population Ecology, vol. 35, no. 2, pp. 335–348, 1993. View at Publisher · View at Google Scholar · View at Scopus
  29. M. L. LaMana and J. C. Miller, “Field observations on harmonia axyridis pallas (Coleoptera: Coccinellidae) in oregon,” Biological Control, vol. 6, no. 2, pp. 232–237, 1996. View at Publisher · View at Google Scholar · View at Scopus
  30. J. J. Obrycki, K. L. Giles, and A. M. Ormord, “Interactions between an introduced and indigenous coccinellid species at different prey densities,” Oecologia, vol. 117, no. 1-2, pp. 279–285, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Kajita, F. Takano, H. Yasuda, and B. K. Agarwala, “Effects of indigenous ladybird species (Coleoptera: Coccinellidae) on the survival of an exotic species in relation to prey abundance,” Applied Entomology and Zoology, vol. 35, no. 4, pp. 473–479, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. J. P. Michaud, “Invasion of the Florida citrus ecosystem by Harmonia axyridis (Coleoptera: Coccinellidae) and asymmetric competition with a native species, Cycloneda sanguinea,” Environmental Entomology, vol. 31, no. 5, pp. 827–835, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Yasuda, E. W. Evans, Y. Kajita, K. Urakawa, and T. Takizawa, “Asymmetric larval interactions between introduced and indigenous ladybirds in North America,” Oecologia, vol. 141, no. 4, pp. 722–731, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. C. J. Briggs and E. T. Borer, “Why short-term experiments may not allow long-term predictions about intraguild predation,” Ecological Applications, vol. 15, no. 4, pp. 1111–1117, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Janssen, M. Montserrat, R. HilleRisLambers, A. M. de Roos, A. Pallini, and M. W. Sabelis, “Intraguild predation usually does not disrupt biological control,” in Trophic and Guild Interactions in Biological Control, J. Brodeur and G. Boivin, Eds., pp. 21–44, Springer, Dordrecht, The Netherlands, 2006. View at Google Scholar
  36. A. Janssen, M. W. Sabelis, S. Magalhães, M. Montserrat, and T. van der Hammen, “Habitat structure affects intraguild predation,” Ecology, vol. 88, no. 11, pp. 2713–2719, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Amarasekare, “Trade-offs, temporal variation, and species coexistence in communities with intraguild predation,” Ecology, vol. 88, no. 11, pp. 2720–2728, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Amarasekare, “Productivity, dispersal and the coexistence of intraguild predators and prey,” Journal of Theoretical Biology, vol. 243, no. 1, pp. 121–133, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  39. V. H. W. Rudolf, “The interaction of cannibalism and omnivory: consequences for community dynamics,” Ecology, vol. 88, no. 11, pp. 2697–2705, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. R. D. Holt and G. R. Huxel, “Alternative prey and the dynamics of intraguild predation: theoretical perspectives,” Ecology, vol. 88, no. 11, pp. 2706–2712, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. M. E. Torchin, K. D. Lafferty, A. P. Dobson, V. J. McKenzie, and A. M. Kuris, “Introduced species and their missing parasites,” Nature, vol. 421, no. 6923, pp. 628–630, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. R. N. Mack, D. Simberloff, W. M. Lonsdale, H. Evans, M. Clout, and F. A. Bazzaz, “Biotic invasions: causes, epidemiology, global consequences, and control,” Ecological Applications, vol. 10, no. 3, pp. 689–710, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. J. T. A. Dick, W. I. Montgomery, and R. W. Elwood, “Intraguild predation may explain an amphipod replacement: evidence from laboratory populations,” Journal of Zoology, vol. 249, no. 4, pp. 463–468, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. C. MacNeil, W. I. Montgomery, J. T. A. Dick, and R. W. Elwood, “Factors influencing the distribution of native and introduced Gammarus spp. in Irish river systems,” Archiv fur Hydrobiologie, vol. 151, no. 3, pp. 353–368, 2001. View at Google Scholar · View at Scopus
  45. S. J. Mithen and J. H. Lawton, “Food-web models that generate constant predator-prey ratios,” Oecologia, vol. 69, no. 4, pp. 542–550, 1986. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Law and J. C. Blackford, “Self-assembling food webs: a global viewpoint of coexistence of species in Lotka-Volterra communities,” Ecology, vol. 73, no. 2, pp. 567–578, 1992. View at Publisher · View at Google Scholar · View at Scopus
  47. J. D. Murray, Mathematical Biology, Springer, Berlin, Germany, 1989. View at MathSciNet
  48. E. E. Holmes, M. A. Lewis, J. E. Banks, and R. R. Veit, “Partial differential equations in ecology: spatial interactions and population dynamics,” Ecology, vol. 75, no. 1, pp. 17–29, 1994. View at Publisher · View at Google Scholar · View at Scopus
  49. D. J. Murrell and R. Law, “Heteromyopia and the spatial coexistence of similar competitors,” Ecology Letters, vol. 6, no. 1, pp. 48–59, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Morozov, S. Petrovskii, and B.-L. Li, “Spatiotemporal complexity of patchy invasion in a predator-prey system with the Allee effect,” Journal of Theoretical Biology, vol. 238, no. 1, pp. 18–35, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  51. S. V. Petrovskii, A. Y. Morozov, and E. Venturino, “Allee effect makes possible patchy invasion in a predator-prey system,” Ecology Letters, vol. 5, no. 3, pp. 345–352, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. S. V. Petrovskii, M. E. Vinogradov, and A. Y. Morozov, “Formation of the patchiness in the plankton horizontal distribution due to biological invasion in a two-species model with account for the allee effect,” Oceanology, vol. 42, no. 3, pp. 363–372, 2002. View at Google Scholar · View at Scopus
  53. C. S. Elton, The Ecology of Invasions by Animals and Plants, Methuen, London, UK, 1958.
  54. H. A. Mooney and J. A. Drake, Ecology of Biological Invasions of North America and Hawaii, Springer, New York, NY, USA, 1986.
  55. H. G. Baker and G. L. Stebbins, The Genetics of Colonizing Species, Academic Press, New York, NY, USA, 1965.
  56. M. Williamson, “Invasions,” Ecography, vol. 22, no. 1, pp. 5–12, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. K. M. Maredia, S. H. Gage, D. A. Landis, and J. M. Scriber, “Habitat use patterns by the seven-spotted lady beetle (Coleoptera: Coccinellidae) in a diverse agricultural landscape,” Biological Control, vol. 2, no. 2, pp. 159–165, 1992. View at Publisher · View at Google Scholar · View at Scopus
  58. E. W. Evans, “Morphology of invasion: body size patterns associated with establishment of Coccinella septempunctata (Coleoptera: Coccinellidae) in western North America,” European Journal of Entomology, vol. 97, no. 4, pp. 469–474, 2000. View at Google Scholar · View at Scopus
  59. E. W. Evans, “Habitat displacement of North American ladybirds by an introduced species,” Ecology, vol. 85, no. 3, pp. 637–647, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. E. Lucas, I. Gagné, and D. Coderre, “Impact of the arrival of Harmonia axyridis on adults of Coccinella septempunctata and Coleomegilla maculata (Coleoptera: Coccinellidae),” European Journal of Entomology, vol. 99, no. 4, pp. 457–463, 2002. View at Google Scholar · View at Scopus
  61. B. A. Nault and G. G. Kennedy, “Establishment of multicolored Asian lady beetle in Eastern North Carolina: seasonal abundance and crop exploitation within an agricultural landscape,” BioControl, vol. 48, no. 4, pp. 363–378, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Hironori and S. Katsuhiro, “Cannibalism and interspecific predation in two predatory ladybirds in relation to prey abundance in the field,” Entomophaga, vol. 42, no. 1-2, pp. 153–163, 1997. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Sakuratani, “New record of Adalia bipunctata (Linnaeus) (Coleoptera, Coccinellidae) from Japan,” Japanese Journal of Entomology and Zoology, vol. 62, pp. 627–628, 1994. View at Google Scholar
  64. Y. Sakuratani, Y. Matsumoto, M. Oka et al., “Life history of Adalia bipunctata (Coleoptera: Coccinellidae) in Japan,” European Journal of Entomology, vol. 97, no. 4, pp. 555–558, 2000. View at Google Scholar · View at Scopus
  65. S. V. Petrovskii, H. Malchow, F. M. Hilker, and E. Venturino, “Patterns of patchy spread in deterministic and stochastic models of biological invasion and biological control,” Biological Invasions, vol. 7, no. 5, pp. 771–793, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. M. E. Gilpin and M. L. Rosenzweig, “Enriched predator-prey systems: theoretical stability,” Science, vol. 177, no. 4052, pp. 902–904, 1972. View at Publisher · View at Google Scholar · View at Scopus