Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2014 (2014), Article ID 654978, 13 pages
http://dx.doi.org/10.1155/2014/654978
Research Article

Approximate Analytical Solutions for Mathematical Model of Tumour Invasion and Metastasis Using Modified Adomian Decomposition and Homotopy Perturbation Methods

1Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Faculty of Science & Technology, Open University Malaysia, 50603 Kuala Lumpur, Malaysia

Received 21 August 2013; Revised 9 December 2013; Accepted 16 December 2013; Published 30 January 2014

Academic Editor: Hak-Keung Lam

Copyright © 2014 Norhasimah Mahiddin and S. A. Hashim Ali. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. J. Chaplain and A. M. Stuart, “A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor,” IMA Journal of Mathematics Applied in Medicine and Biology, vol. 10, no. 3, pp. 149–168, 1993. View at Publisher · View at Google Scholar
  2. M. A. J. Chaplain, “The mathematical modelling of tumour angiogenesis and invasion,” Acta Biotheoretica, vol. 43, no. 4, pp. 387–402, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. A. R. A. Anderson and M. A. J. Chaplain, “Continuous and discrete mathematical models of tumor-induced angiogenesis,” Bulletin of Mathematical Biology, vol. 60, no. 5, pp. 857–899, 1998. View at Publisher · View at Google Scholar
  4. J. A. Sherratt and M. A. Nowak, “Oncogenes, Anti-Oncogenes and the immune response to cancer: a mathematical model,” Proceedings of the Royal Society of London B, vol. 248, no. 1323, pp. 261–271, 1992. View at Publisher · View at Google Scholar
  5. R. A. Gatenby and E. T. Gawlinski, “A reaction-diffusion model of cancer invasion,” Cancer Research, vol. 56, no. 24, pp. 5745–5753, 1996. View at Google Scholar · View at Scopus
  6. M. A. J. Chaplain, “Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modelling of the stages of tumour development,” Mathematical and Computer Modelling, vol. 23, no. 6, pp. 47–87, 1996. View at Google Scholar · View at Scopus
  7. G. Adomian, “A review of the decomposition method and some recent results for nonlinear equations,” Computers & Mathematics with Applications, vol. 21, no. 5, pp. 101–127, 1991. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. J.-H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257–262, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. I. Hashim, M. S. M. Noorani, R. Ahmad, S. A. Bakar, E. S. Ismail, and A. M. Zakaria, “Accuracy of the adomian decomposition method applied to the Lorenz system,” Chaos, Solitons & Fractals, vol. 28, no. 5, pp. 1149–1158, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. S. M. El-Sayed and M. R. Abdel-Aziz, “A comparison of Adomian's decomposition method and wavelet-Galerkin method for solving integro-differential equations,” Applied Mathematics and Computation, vol. 136, no. 1, pp. 151–159, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. A.-M. Wazwaz, “A reliable modification of Adomian decomposition method,” Applied Mathematics and Computation, vol. 102, no. 1, pp. 77–86, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. A. R. A. Anderson, M. A. J. Chaplain, E. L. Newman, R. J. C. Steeele, and A. M. Thompson, “Mathematical modelling of tumour invasion and metastasis,” Journal of Theoretical Medicine, vol. 2, no. 2, pp. 129–154, 2000. View at Publisher · View at Google Scholar
  13. I. L. El-Kalla, “Convergence of the Adomian method applied to a class of nonlinear integral equations,” Applied Mathematics Letters, vol. 21, no. 4, pp. 372–376, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. S. S. Behzadi and A. Yildirim, “A method to estimate the solution of weakly singular non-linear integro-differential equations by applying the Homotopy methods,” International Journal of Industrial Mathematics, vol. 4, no. 1, pp. 41–51, 2012. View at Google Scholar