Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2014, Article ID 828907, 10 pages
http://dx.doi.org/10.1155/2014/828907
Research Article

Visual Tracking Using Max-Average Pooling and Weight-Selection Strategy

Beijing Key Laboratory of Intelligent Telecommunication Software and Multimedia, School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

Received 23 April 2014; Accepted 7 July 2014; Published 20 July 2014

Academic Editor: Yantao Shen

Copyright © 2014 Suguo Zhu and Junping Du. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Wang, H. Lu, and M. Yang, “Online object tracking with sparse prototypes,” IEEE Transactions on Image Processing, vol. 22, no. 1, pp. 314–325, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  2. Z. Kalal, K. Mikolajczyk, and J. Matas, “Face-TLD: tracking-learning-detection applied to faces,” in Proceedings of the 17th IEEE International Conference on Image Processing (ICIP '10), pp. 3789–3792, Hong Kong, China, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. D. A. Ross, J. Lim, R. Lin, and M. Yang, “Incremental learning for robust visual tracking,” International Journal of Computer Vision, vol. 77, no. 1–3, pp. 125–141, 2008. View at Publisher · View at Google Scholar
  4. D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 603–619, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Liu, J. Huang, L. Yang, and C. Kulikowsk, “Robust tracking using local sparse appearance model and K-selection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '11), pp. 1313–1320, Providence, RI, USA, June 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-rigid objects using mean shift,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '00), pp. 142–149, Hilton Head Island, SC, USA, June 2000. View at Scopus
  7. B. Li, W. Xiong, W. Hu et al., “Illumination estimation based on bilayer sparse coding,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1423–1429, Portland, Ore, USA, 2013.
  8. X. Jia, H. Lu, and M. Yang, “Visual tracking via adaptive structural local sparse appearance model,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '12), pp. 1822–1829, Providence, RI, USA, June 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. H. P. Liu and F. C. Sun, “Fusion tracking in color and infrared images using joint sparse representation,” Science China: Information Sciences, vol. 55, no. 3, pp. 590–599, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  10. K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best multi-stage architecture for object recognition?” in Proceedings of IEEE 12th International Conference on Computer Vision (ICCV '09), pp. 2146–2153, Kyoto, Japan, October 2009. View at Publisher · View at Google Scholar
  11. J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching using sparse coding for image classification,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR '09), pp. 1794–1801, Miami, Fla, USA, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce, “Learning mid-level features for recognition,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '10), pp. 2559–2566, San Francisco, Calif, USA, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Boureau, J. Ponce, and Y. Lecun, “A theoretical analysis of feature pooling in visual recognition,” in Proceedings of the 27th International Conference on Machine Learning (ICML '10), pp. 111–118, Haifa, Israel, June 2010. View at Scopus
  14. P. Sarkar, “Sequential Monte Carlo methods in practice,” Technometrics, vol. 45, no. 1, p. 106, 2003. View at Publisher · View at Google Scholar
  15. P. Ghosh and B. S. Manjunath, “Robust simultaneous registration and segmentation with sparse error reconstruction,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 2, pp. 425–436, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, “Robust visual tracking via multi-task sparse learning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '12), pp. 2042–2049, Providence, RI, USA, June 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Cong, J. Yuan, and J. Liu, “Sparse reconstruction cost for abnormal event detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '11), pp. 3449–3456, Providence, RI, USA, June 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. He, Q. Yang, W. H. R. Lau et al., “Visual tracking via locality sensitive histograms,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2427–2434, Portland, Ore, USA, 2013.
  19. G. Carneiro and J. C. Nascimento, “The fusion of deep learning architectures and particle filtering applied to lip tracking,” in Proceedings of the 20th International Conference on Pattern Recognition (ICPR '10), pp. 2065–2068, Istanbul, Turkey, August 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix factorization and sparse coding,” Journal of Machine Learning Research, vol. 11, pp. 19–60, 2010. View at Google Scholar · View at MathSciNet · View at Scopus