Table of Contents Author Guidelines Submit a Manuscript
Journal of Analytical Methods in Chemistry
Volume 2012, Article ID 161865, 8 pages
http://dx.doi.org/10.1155/2012/161865
Research Article

On the Primary Ionization Mechanism(s) in Matrix-Assisted Laser Desorption Ionization

1National Council of Researches, Institute of Molecular Sciences and Technologies, Corso Stati Uniti 4, I35100 Padova, Italy
2Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
3National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
4National Centre for Nuclear Research, 05-400 Otwock, Świerk, Poland

Received 25 May 2012; Accepted 19 October 2012

Academic Editor: Giuseppe Ruberto

Copyright © 2012 Laura Molin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Karas, D. Bachmann, and F. Hillekamp, “Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules,” Analytical Chemistry, vol. 57, no. 14, pp. 2935–2939, 1985. View at Google Scholar · View at Scopus
  2. R. Knochenmuss, Electrospray and MALDI Mass Spectrometry, R. B. Cole, John Wiley & Sons, Hoboken, NJ, USA, 2010.
  3. R. Knochenmuss, “Ion formation mechanisms in UV-MALDI,” Analyst, vol. 131, no. 9, pp. 966–986, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. P. D. Setz and R. Knochenmuss, “Exciton mobility and trapping in a MALDI matrix,” Journal of Physical Chemistry A, vol. 109, no. 18, pp. 4030–4037, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. F. Ireland and P. A. H. Wyatt, “Acid-base properties of electronically excited states of organic molecules,” Advances in Physical Organic Chemistry, vol. 12, pp. 131–221, 1976. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Karas, M. Gluckmann, and J. Shafer, “Ionization in MALDI: singly charged molecular ions are the lucky survivors,” Journal of Mass Spectrometry, vol. 35, no. 1, pp. 1–12, 2000. View at Publisher · View at Google Scholar
  7. D. D. Dlott, S. Hambir, and J. Franken, “The new wave in shock waves,” Journal of Physical Chemistry B, vol. 102, no. 12, pp. 2121–2130, 1998. View at Google Scholar · View at Scopus
  8. K. Dreisewerd, M. Schürenberg, M. Karas, and F. Hillenkamp, “Influence of the laser intensity and spot size on the desorption of molecules and ions in matrix-assisted laser desorption/ionization with a uniform beam profile,” International Journal of Mass Spectrometry and Ion Processes, vol. 141, no. 2, pp. 127–148, 1995. View at Google Scholar · View at Scopus
  9. X. Chen, J. A. Carroll, and R. C. Beavis, “Near-ultraviolet-induced matrix-assisted laser desorption/ionization as a function of wavelength,” Journal of the American Society for Mass Spectrometry, vol. 9, no. 9, pp. 885–891, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Zenobi and R. Knochenmuss, “Ion formation in maldi mass spectrometry,” Mass Spectrometry Reviews, vol. 17, no. 5, pp. 337–366, 1998. View at Google Scholar · View at Scopus
  11. R. W. Taft and R. D. Topson, “The nature and analysis of substituent effect,” Progress in Physical Organic Chemistry, vol. 16, pp. 1–83, 1987. View at Publisher · View at Google Scholar
  12. K. Breuker, R. Knochenmuss, and R. Zenobi, “Gas-phase basicities of deprotonated matrix-assisted laser desorption/ionization matrix molecules,” International Journal of Mass Spectrometry, vol. 184, no. 1, pp. 25–38, 1999. View at Google Scholar · View at Scopus
  13. C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Physical Review B, vol. 37, no. 2, pp. 785–789, 1988. View at Publisher · View at Google Scholar · View at Scopus
  14. Spartan '08 Version 1.2.0, Wavefunction, Irvine, Calif, USA, 2009.
  15. L. Leiserowitz, “Molecular packing models. Carboxylic acids,” Acta Crystallographica B, vol. 32, no. 3, pp. 775–802, 1976. View at Publisher · View at Google Scholar
  16. J. K. Maurin, “Oxime-carboxyl hydrogen bonds: the preferred interaction determining crystal packing of ‘carboxyoximes’,” Acta Crystallographica B, vol. 54, no. 6, pp. 866–871, 1998. View at Google Scholar · View at Scopus
  17. J. D. Dunitz and P. Strickler, Structural Chemistry and Molecular Biology, W. H. Freeman, San Francisco, Calif, USA, 1968, edited by A. Rich, N. Davidson.
  18. F. H. Allen and W. D. S. Motherwell, “Applications of the Cambridge structural database in organic chemistry and crystal chemistry,” Acta Crystallographica B, vol. 58, no. 1, part 3, pp. 407–422, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. M. C. Etter, J. C. MacDonald, and J. Bernstein, “Graph-set analysis of hydrogen-bond patterns in organic crystals,” Acta Crystallographica B, vol. 46, pp. 2–262, 1990. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Grell, J. Bernstein, and G. Tinhofer, “Graph-set analysis of hydrogen-bond patterns: some mathematical concepts,” Acta Crystallographica B, vol. 55, no. 6, pp. 1030–1043, 1999. View at Google Scholar · View at Scopus
  21. M. Ratajczak-Sitarz and A. Katrusiak, “Coupling of molecular orientation with the hydrogen-bond dimensions and H-sites in carboxylic acids,” Journal of Molecular Structure, vol. 995, no. 1–3, pp. 29–34, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Nahringbauer, “A reinvestigation of the structure of formic acid (at 98 K),” Acta Crystallographica B, vol. 34, no. 1, pp. 315–318, 1978. View at Publisher · View at Google Scholar
  23. D. R. Allan and S. J. Clark, “Impeded dimer formation in the high-pressure crystal structure of formic acid,” Physical Review Letters, vol. 82, no. 17, pp. 3464–3467, 1999. View at Google Scholar · View at Scopus
  24. R. Boese, D. Blaser, R. Latz, and A. Baumen, “Acetic acid at 40 K,” Acta Crystallographica C, vol. 55, no. 2, 1999. View at Publisher · View at Google Scholar
  25. I. Nahringbauer, J. O. Lundgren, and E. K. Andersen, “Trifluoroacetic acid,” Acta Crystallographica B, vol. 35, no. 2, pp. 508–510, 1979. View at Publisher · View at Google Scholar
  26. K. Rajagopal, A. Mostad, R. V. Krishnakumar, M. S. Nandhini, and S. Natarajan, “Trichloroacetic acid at 105 K,” Acta Crystallographica Section E, vol. 59, no. 3, pp. o316–o318, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Sauer, D. Lechner, and I. G. Gut, Mass Spectrometry and Genomic Analysis, Kluwer Academic, Dodrecht, The Netherlands, 2001, edited by J. Nicholas Housby.