Table of Contents Author Guidelines Submit a Manuscript
Journal of Analytical Methods in Chemistry
Volume 2012, Article ID 439082, 9 pages
http://dx.doi.org/10.1155/2012/439082
Research Article

Thermoanalytical Investigation of Some Sulfone-Containing Drugs

1Pharmaceutical Chemistry Department, National Organization for Drug Control and Research, Pyramids Avenue, P.O. Box 29, Giza, Egypt
2Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo 1860, Egypt
3Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt

Received 3 November 2011; Revised 13 February 2012; Accepted 20 February 2012

Academic Editor: Pablo Richter

Copyright © 2012 Nahla N. Salama et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. J. Tomecki and C. J. Catalano, “Dapsone hypersensitivity. The sulfone syndrome revisited,” Archives of Dermatology, vol. 117, no. 1, pp. 38–39, 1981. View at Publisher · View at Google Scholar · View at Scopus
  2. J. H. Richardus and T. C. Smith, “Increased incidence in leprosy of hypersensitivity reactions to dapsone after introduction of multidrug therapy,” Leprosy Review, vol. 60, no. 4, pp. 267–273, 1989. View at Google Scholar · View at Scopus
  3. British Pharmacopoeia, vol. 1-2, HerMajesty's Stationery Office(H.M.S.O.), London ,UK, 2010.
  4. The United States Pharmacopoeia USP 34, The National Formulary NF 29, The United States Pharmacopeial Convention, 2011.
  5. H. B. Hucker, P. M. Ahmad, E. A. Miller, and R. Brobyn, “Metabolism of dimethyl sulphoxide to dimethyl sulphone in the rat and man,” Nature, vol. 209, no. 5023, pp. 619–620, 1966. View at Publisher · View at Google Scholar · View at Scopus
  6. L. U. V. Murav'ev, M. S. Venikova, and N. G. Pleskovskai, Patologicheskaia Fiziologiia i Eksperimental'naia Terapiia, vol. 2, pp. 37–39, 1991.
  7. J. J. Kocsis, S. Harkaway, and R. Snyder, “Biological effects of the metabolites of dimethyl sulfoxide,” Annals of the New York Academy of Sciences, vol. 243, pp. 104–109, 1975. View at Google Scholar · View at Scopus
  8. J. L. Liu, S. LI, Z. H. LI, and H. Ma, “Capillary gas-chromatographic separation and determination of dimethyl sulfoxide and dimethyl sulfone,” Lihua Jianyan, Huaxue Fence, vol. 38, pp. 283–284, 2002. View at Google Scholar
  9. A. G. Gillman, L. E. Limbird, and J. G. Hardman, Goodman and Gillman's The Pharmacological Basis of Therapeutics, McGraw-Hill, New York, NY, USA, 11th edition, 2006.
  10. P. Nagaraja, H. S. Yathirajan, K. R. Sunitha, and R. A. Vasantha, “Novel methods for the rapid spectrophotometric determination of dapsone,” Analytical Letters, vol. 35, no. 9, pp. 1531–1540, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. H. D. Revanasiddappa and B. Manju, “Spectrophotometric determination of some chemotherapeutic agents using acetyl acetone,” Drug Development and Industrial Pharmacy, vol. 28, no. 5, pp. 515–521, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Nagaraja, K. R. Sunitha, R. A. Vasantha, and H. S. Yathirajan, “A sensitive method for the spectrophotometric determination of dapsone,” Indian Drugs, vol. 38, no. 9, pp. 489–490, 2001. View at Google Scholar · View at Scopus
  13. H. D. Revanasiddappa and B. Manju, “A spectrophotometric method for the determination of metoclopramide HCl and dapsone,” Journal of Pharmaceutical and Biomedical Analysis, vol. 25, no. 3-4, pp. 631–637, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. C. S. P. Sastry, K. R. Srinivas, and K. M. M. K. Prasad, “Spectrophotometric determination of bio-active compounds in commercial samples with nitrous acid and cresyl fast violet acetate,” Analytical Letters, vol. 29, no. 8, pp. 1329–1349, 1996. View at Google Scholar · View at Scopus
  15. M. I. Toral, A. Tassara, C. Soto, and P. Richter, “Simultaneous determination of dapsone and pyrimethamine by derivative spectrophotometry in pharmaceutical formulations,” Journal of AOAC International, vol. 86, no. 2, pp. 241–245, 2003. View at Google Scholar · View at Scopus
  16. M. I. Evgen'ev, S. Y. Garmonov, V. I. Pogorel'tsev, and E. F. Shakirova, “Determination of 4,4′-diaminodiphenyl sulfone and its derivatives in biological samples by spectrophotometry and chromatography,” Journal of Analytical Chemistry, vol. 54, no. 6, pp. 543–548, 1999. View at Google Scholar · View at Scopus
  17. K. T. Shetty, P. M. Naik, and P. R. Mahadevan, “A specific colorimetric assay for dapsone in biological fluids,” Indian Journal of Clinical Biochemistry, vol. 5, no. 2, pp. 101–109, 1990. View at Google Scholar · View at Scopus
  18. I. Shoukrallah, A. Sakla, and R. Wintersteiger, “Spectrophotometric determination of dapsone by using 9-chloroacridine as a chromogenic reagent,” Pharmazie, vol. 45, no. 9, pp. 675–677, 1990. View at Google Scholar · View at Scopus
  19. J. C. Tawada and A. F. Midio, “The determination of dapsone in plasma and urine,” Revista de Farmacia e Bioquimica da Universidade de Sao Paulo, vol. 25, no. 2, pp. 177–178, 1989. View at Google Scholar · View at Scopus
  20. L. Ma, B. Tang, and C. Chu, “Spectrofluorimetric study of the β-cyclodextrin–dapsone–linear alcohol supramolecular system and determination of dapsone,” Analytica Chimica Acta, vol. 46, pp. 273–283, 2002. View at Google Scholar
  21. I. Z. F. Shukrallah and A. B. Sakla, “The use of the protou magnetic pesonance (PMR) spectroscopy in the quantitative determination of dapsone in the bulk and tablets,” Spectroscopy Letters, vol. 21, pp. 559–564, 1988. View at Publisher · View at Google Scholar
  22. H. Oelschlager and G. Modrack, “Analysis of drugs by polarographic methods, XXVI: polarographic determination (DPP) of the antileprosy agent diaphenylsulfone,” Archiv der Pharmazie, vol. 319, no. 1, pp. 10–14, 1986. View at Google Scholar · View at Scopus
  23. P. Manisankar, A. Sarpudeen, and S. Viswanathan, “Electroanalysis of dapsone, an anti-leprotic drug,” Journal of Pharmaceutical and Biomedical Analysis, vol. 26, no. 5-6, pp. 873–881, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. M. M. Lemnge, A. Roenn, H. Flachs, and I. C. Bygbjerb, “Simultaneous determination of dapsone, monoacetyldapsone and pyrimethamine in whole blood and plasma by high-performance liquid chromatography,” Journal of Chromatography B, vol. 613, no. 2, pp. 340–346, 1993. View at Publisher · View at Google Scholar
  25. J. Moncrieff, “Determination of dapsone in serum and saliva using reversed-phase high-performance liquid chromatography with ultraviolet or electrochemical detection,” Journal of Chromatography B, vol. 654, no. 1, pp. 103–110, 1994. View at Google Scholar · View at Scopus
  26. R. H. C. Queiroz, S. A. C. Dreossi, and D. Carvalho, “A rapid, specific, and sensitive method for the determination of acetylation phenotype using dapsone,” Journal of Analytical Toxicology, vol. 21, no. 3, pp. 203–207, 1997. View at Google Scholar · View at Scopus
  27. A. Tracqui, A. M. Gutbub, P. Kintz, and P. Mangin, “A Case of Acute Dapsone Poisoning: Toxicological Data and Review of the Literature,” Journal of Analytical Toxicology, vol. 19, pp. 229–235, 1995. View at Google Scholar
  28. A. M. Ronn, M. M. Lemnge, H. R. Angelo, and I. C. Bygbjerg, “High-performance liquid chromatography determination of dapsone, monoacetyldapsone, and pyrimethamine in filter paper blood spots,” Therapeutic Drug Monitoring, vol. 17, no. 1, pp. 79–83, 1995. View at Google Scholar · View at Scopus
  29. A. Takeuchi, S. Yamamoto, R. Narai et al., “Determination of dimethyl sulfoxide and dimethyl sulfone in urine by gas chromatography-mass spectrometry after preparation using 2,2-dimethoxypropane,” Biomedical Chromatography, vol. 24, no. 5, pp. 465–471, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. A. P. Micheel, C. Y. Ko, and H. Y. Guh, “Ion chromatography method and validation for the determination of sulfate and sulfamate ions in topiramate drug substance and finished product,” Journal of Chromatography B, vol. 709, no. 1, pp. 166–172, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Styslo-Zalasik and W. Li, “Determination of topiramate and its degradation product in liquid oral solutions by high performance liquid chromatography with a chemiluminescent nitrogen detector,” Journal of Pharmaceutical and Biomedical Analysis, vol. 37, no. 3, pp. 529–534, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Biro, E. Pergel, G. Arvai et al., “High-performance liquid chromatographic study of topiramate and its impurities,” Chromatographia, vol. 63, Supplement 13, pp. S137–S141, 2006. View at Publisher · View at Google Scholar
  33. G. Bahrami and B. Mohammadi, “A novel high sensitivity HPLC assay for topiramate, using 4-chloro-7-nitrobenzofurazan as pre-column fluorescence derivatizing agent,” Journal of Chromatography B, vol. 850, no. 1-2, pp. 400–404, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Contin, R. Riva, F. Albani, and A. Baruzzi, “Simple and rapid liquid chromatographic-turbo ion spray mass spectrometric determination of topiramate in human plasma,” Journal of Chromatography B, vol. 761, no. 1, pp. 133–137, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Bahrami, S. Mirzaeei, B. Mohammadi, and A. Kiani, “High performance liquid chromatographic determination of topiramate in human serum using UV detection,” Journal of Chromatography B, vol. 822, no. 1–2, pp. 322–325, 2005. View at Publisher · View at Google Scholar
  36. P. H. Tang, M. V. Miles, T. A. Glauser et al., “An improved gas chromatography assay for topiramate monitoring in pediatric patients,” Therapeutic Drug Monitoring, vol. 22, no. 2, pp. 195–201, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. M. L. Holland, J. A. Uetz, and K. T. Ng, “Automated capillary gas chromatographic assay using flame ionization detection for the determination of topiramate in plasma,” Journal of Chromatography, vol. 433, pp. 276–281, 1988. View at Publisher · View at Google Scholar · View at Scopus
  38. J. M. Riffitts, L. G. Gisclon, R. J. Stubbs, and M. E. Palmer, “A capillary gas chromatographic assay with nitrogen phosphorus detection for the quantification of topiramate in human plasma, urine and whole blood,” Journal of Pharmaceutical and Biomedical Analysis, vol. 19, no. 3-4, pp. 363–371, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Chen and P. M. Carvey, Rapid Communications in Mass Spectrometry, vol. 15, pp. 159–163, 2001.
  40. D. J. Berry and P. N. Patsalos, “Comparison of topiramate concentrations in plasma and serum by fluorescence polarization immunoassay,” Therapeutic Drug Monitoring, vol. 22, no. 4, pp. 460–464, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. W. W. Wendlandt and L. W. Collins, “The identification of non-prescription internal analgesics by thermal analysis,” Analytica Chimica Acta, vol. 71, no. 2, pp. 411–417, 1974. View at Google Scholar · View at Scopus
  42. D. M. S. Valladao, L. C. S. De Oliveira, J. Zuanon Netto, and M. Ionashiro, “Thermal decomposition of some diuretic agents,” Journal of Thermal Analysis, vol. 46, no. 5, pp. 1291–1299, 1996. View at Google Scholar · View at Scopus
  43. G. Gupchup, K. Alexander, and D. Dollimore, “The use of thermal analysis and mass spectrometry to study the solid state behavior in pharmaceutical tablet mixtures,” Thermochimica Acta, vol. 196, no. 2, pp. 267–279, 1992. View at Google Scholar · View at Scopus
  44. R. O. Macêdo, A. G. de Souza, and A. M. C. Macêdo, “Application of thermogravimetry in the quality control of mebendazole,” Journal of Thermal Analysis, vol. 49, no. 2, pp. 937–941, 1997. View at Google Scholar · View at Scopus
  45. B. Wunderlich, Thermal Analysis, Academic Press, New York, NY, USA, 1990.
  46. D. Dollimore, “A breath of fresh air,” Thermochimica Acta, vol. 340, pp. 183–194, 1999. View at Google Scholar · View at Scopus
  47. H. H. Horowitz and G. Metzger, “A new analysis of thermogravimetric traces,” Analytical Chemistry, vol. 35, no. 10, pp. 1464–1468, 1963. View at Google Scholar · View at Scopus
  48. P. Singh, L. Premkumar, R. Mehrotra, H. C. Kandpal, and A. K. Bakhshi, “Evaluation of thermal stability of indinavir sulphate using diffuse reflectance infrared spectroscopy,” Journal of Pharmaceutical and Biomedical Analysis, vol. 47, no. 2, pp. 248–254, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Menen, M. El-Ries, K. S. Alexender, A. Rigo, and D. Dollimere, “A Thermal Analysis Study of the Decomposition of Hydrochlorthiazide,” Instrumentation Science and Technology, vol. 30, pp. 329–340, 2002. View at Google Scholar
  50. A. W. Coats and J. P. Redfern, “Kinetic parameters from thermogravimetric data,” Nature, vol. 201, no. 4914, pp. 68–69, 1964. View at Publisher · View at Google Scholar · View at Scopus
  51. M. E. Brown, Introduction to Thermal Analysis, Kluwer Academic, New York, NY, USA, 1988.
  52. D. Dollimore, P. Tong, and K. S. Alexander, “The kinetic interpretation of the decomposition of calcium carbonate by use of relationships other than the Arrhenius equation,” Thermochimica Acta, vol. 282/283, pp. 13–27, 1996. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Araújo, M. S. Bezerra, S. Storpirtis, and J. Matos, “Determination of the melting temperature, heat of fusion, and purity analysis of different samples of zidovudine (AZT) using DSC,” Brazilian Journal of Pharmaceutical Sciences, vol. 46, no. 1, pp. 37–43, 2010. View at Publisher · View at Google Scholar · View at Scopus