Table of Contents Author Guidelines Submit a Manuscript
Journal of Analytical Methods in Chemistry
Volume 2013, Article ID 352606, 8 pages
http://dx.doi.org/10.1155/2013/352606
Research Article

Assessment of Volatile Chemical Composition of the Essential Oil of Jatropha ribifolia (Pohl) Baill by HS-SPME-GC-MS Using Different Fibers

1Centro de Pesquisas e Tecnologia em Recursos Naturais (CPTREN), Pós-Gradução em Recursos Naturais (PGRN), Departamento de Química, Universidade Estadual de Mato Grosso do Sul (UEMS), Rua Emílio Mascolli, 275, 79950-000 Naviraí, MS, Brazil
2Complexos e Centrais de Apoio a Pesquisa (COMCAP), Departamento de Química, Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, Jd Universitário, 87020-900 Maringá, PR, Brazil

Received 9 May 2013; Revised 6 August 2013; Accepted 7 August 2013

Academic Editor: Mohamed Abdel-Rehim

Copyright © 2013 Celia Eliane de Lara da Silva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. A. Pimentel, B. Riet-Correa, A. F. Dantas, R. M. T. Medeiros, and F. Riet-Correa, “Poisoning by Jatropha ribifolia in goats,” Toxicon, vol. 59, no. 5, pp. 587–591, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. E. S. Fernandes, F. A. Rodrigues, D. Tófoli et al., “Isolation structural identification and cytotoxic activity of hexanic extract, cyperenoic acid, and jatrophone terpenes from Jatropha ribifolia (Pohl) Baill roots,” Journal of Pharmacy and Pharmacognosy, vol. 23, no. 3, pp. 441–446, 2013. View at Google Scholar
  3. E. L. Neves, L. S. Funch, and B. F. Viana, “Comportamento fenológico de três espécies de Jatropha(Euphorbiaceae) da Caatinga, semi-árido do Brasil,” Revista Brasileira de Botanica, vol. 33, no. 1, pp. 155–166, 2010. View at Publisher · View at Google Scholar
  4. F. Deeba, V. Kumar, K. Gautam, R. K. Saxena, and D. K. Sharma, “Bioprocessing of Jatropha curcas seed oil and deoiled seed hulls for the production of biodiesel and biogas,” Biomass and Bioenergy, vol. 40, pp. 13–18, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. K. F. Yee, K. T. Lee, R. Ceccato, and A. Z. Abdullah, “Production of biodiesel from Jatropha curcas L. oil catalyzed by SO42−/ZrO2 catalyst: effect of interaction between process variables,” Bioresource Technology, vol. 102, no. 5, pp. 4285–4289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Corro, N. Tellez, E. Ayala, and A. Marinez-Ayala, “Two-step biodiesel production from Jatropha curcas crude oil using SiO2·HF solid catalyst for FFA esterification step,” Fuel, vol. 89, no. 10, pp. 2815–2821, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. R. Mariz, M. S. T. Araújo, G. S. Cerqueira et al., “Avaliação histopatológica em ratos após tratamento agudo com extrato etanólico de partes aéreas de Jatropha gossypfolia L.,” Brazilian Journal of Pharmacognosy, vol. 18, pp. 213–216, 2008. View at Google Scholar
  8. V. P. Kumar, N. S. Chauhan, H. Padh, and M. Rajani, “Search for antibacterial and antifungal agents from selected Indian medicinal plants,” Journal of Ethnopharmacology, vol. 107, no. 2, pp. 182–188, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. R. K. Devappa, H. P. S. Makkar, and K. Becker, “Biodegradation of Jatropha curcas phorbol esters in soil,” Journal of the Science of Food and Agriculture, vol. 90, no. 12, pp. 2090–2097, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. R. K. Devappa, S. K. Rajesh, V. Kumar, H. P. S. Makkar, and K. Becker, “Activities of Jatropha curcas phorbol esters in various bioassays,” Ecotoxicology and Environmental Safety, vol. 78, pp. 57–62, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Narain, M. D. S. Galvão, and M. S. Madruga, “Volatile compounds captured through purge and trap technique in caja-umbu (Spondias sp.) fruits during maturation,” Food Chemistry, vol. 102, no. 3, pp. 726–731, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Moret, L. Barp, K. Grob, and L. S. Conte, “Optimised off-line SPE-GC-FID method for the determination of Mineral Oil Saturated Hydrocarbons (MOSH) in vegetable oils,” Food Chemistry, vol. 129, no. 4, pp. 1898–1903, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Paolini, C. Leandri, J.-M. Desjobert, T. Barboni, and J. Costa, “Comparison of liquid-liquid extraction with headspace methods for the characterization of volatile fractions of commercial hydrolats from typically Mediterranean species,” Journal of Chromatography A, vol. 1193, no. 1-2, pp. 37–49, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. C. W. Sabandar, N. J. Ahmat, and I. Sahidin, “Medicinal property, phytochemistry and pharmacology of several Jatropha species (Euphorbiaceae): a review,” Phtochemistry, vol. 85, pp. 7–29, 2013. View at Publisher · View at Google Scholar
  15. M.-T. Golmakani and K. Rezaei, “Comparison of microwave-assisted hydrodistillation withthe traditional hydrodistillation method in the extractionof essential oils from Thymus vulgaris L,” Food Chemistry, vol. 109, no. 4, pp. 925–930, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. A. Ferhat, B. Y. Meklati, J. Smadja, and F. Chemat, “An improved microwave Clevenger apparatus for distillation of essential oils from orange peel,” Journal of Chromatography A, vol. 1112, no. 1-2, pp. 121–126, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. M. Pourmortazavi and S. S. Hajimirsadeghi, “Supercritical fluid extraction in plant essential and volatile oil analysis,” Journal of Chromatography A, vol. 1163, no. 1-2, pp. 2–24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Benyelles, H. Allali, M. El Amine Dib, N. Djabou, B. Tabti, and J. Costa, “Essential oil from Rhaponticum acaule L. roots: comparative study using HS-SPME/GC/GC-MS and hydrodistillation techniques,” Journal of Saudi Chemical Society, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Huang, Y. Lei, Y. Tang, J. Zhang, L. Qin, and J. Liu, “Comparison of HS-SPME with hydrodistillation and SFE for the analysis of the volatile compounds of Zisu and Baisu, two varietal species of Perilla frutescens of Chinese origin,” Food Chemistry, vol. 125, no. 1, pp. 268–275, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Ahmadi, S. Sadeghi, M. Modarresi, R. Abiri, and A. Mikaeli, “Chemical composition, in vitro anti-microbial, antifungal and antioxidant activities of the essential oil and methanolic extract of Hymenocrater longiflorus Benth., of Iran,” Food and Chemical Toxicology, vol. 48, no. 5, pp. 1137–1144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Wu and H. K. Lee, “Injection port derivatization following ion-pair hollow fiber-protected liquid-phase microextraction for determining acidic herbicides by gas chromatography/mass spectrometry,” Analytical Chemistry, vol. 78, no. 20, pp. 7292–7301, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Augusto and A. L. Valente, “Microextração por fase sólida,” Química Nova, vol. 23, no. 4, pp. 523–530, 2000. View at Publisher · View at Google Scholar
  23. R. C. Silva, E. C. Meurer, M. N. Eberlin, and F. Augusto, “Determination of phthalates in water using fiber introduction mass spectrometry,” Analyst, vol. 130, no. 2, pp. 188–192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Augusto, J. Koziel, and J. Pawliszyn, “Design and validation of portable SPME devices for rapid field air sampling and diffusion-based calibration,” Analytical Chemistry, vol. 73, no. 3, pp. 481–486, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Castro, R. A. Pérez, C. Sánchez-Brunete, and J. L. Tadeo, “Analysis of pesticides volatilised from plants and soil by headspace solid-phase microextraction and gas chromatography,” Chromatographia, vol. 53, supplement 1, pp. S361–S365, 2001. View at Google Scholar · View at Scopus
  26. C. L. Artur and J. Pawliszyn, “Solid phase microextraction with thermal desorption using fused silica optical fibers,” Analytical Chemistry, vol. 62, no. 19, pp. 2145–2148, 1990. View at Publisher · View at Google Scholar
  27. R. C. Silva, P. M. S. Aguiar, and F. Augusto, “Coupling of dynamic headspace sampling and solid phase microextraction,” Chromatographia, vol. 60, no. 11-12, pp. 687–691, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. E. H. M. Koster, C. Wemes, J. B. Morsink, and G. J. de Jong, “Determination of lidocaine in plasma by direct solid-phase microextraction combined with gas chromatography,” Journal of Chromatography B, vol. 739, no. 1, pp. 175–182, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. E. C. Meurer, D. M. Tomazela, R. C. Silva, F. Augusto, and M. N. Eberlin, “Fiber introduction mass spectrometry: fully direct coupling of solid-phase microextraction with mass spectrometry,” Analytical Chemistry, vol. 74, no. 21, pp. 5688–5692, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. M. N. Eberlin and R. Cesar da Silva, “Faster and simpler determination of chlorophenols in water by fiber introduction mass spectrometry,” Analytica Chimica Acta, vol. 620, no. 1-2, pp. 97–102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. R. P. Adams, Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy, Allured, Carol Stream, Ill, USA, 2001.
  32. W. Jennings and T. Shibamoto, Qualitative Analysis of Flavour and Fragrance Volatiles by Glass-Capillary Gas Chromatography, Academic Press, New York, NY, USA, 1980.
  33. National Institute of Standards Technology, PC Version 1.7 of the NIST/EPA/NIH Mass Spectral Library, Perkin Elmer Corporation, Norwalk, Conn, USA, 1999.
  34. E. Coelho, C. Ferreira, and C. M. M. Almeida, “Analysis of polynuclear aromatic hydrocarbons by SPME-GC-FID in environmental and tap waters,” Journal of the Brazilian Chemical Society, vol. 19, no. 6, pp. 1084–1097, 2008. View at Google Scholar · View at Scopus