Table of Contents Author Guidelines Submit a Manuscript
Journal of Analytical Methods in Chemistry
Volume 2013, Article ID 497532, 7 pages
http://dx.doi.org/10.1155/2013/497532
Research Article

Species Classification and Quality Assessment of Cangzhu (Atractylodis Rhizoma) by High-Performance Liquid Chromatography and Chemometric Methods

Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China

Received 6 May 2013; Revised 25 June 2013; Accepted 26 June 2013

Academic Editor: Chih-Ching Huang

Copyright © 2013 Yong-Gang Xia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Fast and sensitive high-performance liquid chromatography (HPLC) coupled with chemometric methods was utilized to assist in the quality assessment of Cangzhu (Atractylodis Rhizoma). By comparative analysis of chromatographic profiles, twelve common peaks were selected for multivariate analysis. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) of the chromatographic data demonstrated that 16 batches of Cangzhu samples could be welldifferentiated and categorized into two groups, which were closely related to their species (Atractylodes chinensis and A. lancea). By loading plots of PCA and OPLS-DA, the “common peaks” 2, 10, and 12 were defined as “marker peaks,” which were identified as atractylodinol, (4E,6E,12E)-tetradecatriene-8,10-diyne-1,3-diyl diacetate, and atractylodin, respectively. These three “marker peaks” were then simultaneously quantified for further controlling the quality of Cangzhu, which showed acceptable linearity, both intraday and interday precisions (RSD ≤ 2.30%), repeatability (RSD ≤ 2.82%), and the recoveries of the three analytes in the range of 96.57–100.16%, with RSDs less than 1.46%. Finally, linear discriminant analysis (LDA) was successfully used to build predictive models of the group membership based on the contents of three marker peaks. Results of the present study demonstrated that HPLC-based metabolic profiling coupled with chemometric methods and quantificational determination was a very flexible, reliable, and effective way for homogeneity evaluation and quality assessment of traditional Chinese medicine.