Table of Contents Author Guidelines Submit a Manuscript
Journal of Analytical Methods in Chemistry
Volume 2017, Article ID 6075405, 7 pages
https://doi.org/10.1155/2017/6075405
Research Article

Transfer Assessment of Carbendazim Residues from Rape Flowers to Apicultural Products

1Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
2Institute of Quality and Standard for Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China

Correspondence should be addressed to Hu Zhang; nc.ca.saaz.liam@uhgnahz

Received 22 October 2016; Accepted 4 January 2017; Published 26 January 2017

Academic Editor: Miguel de la Guardia

Copyright © 2017 Ying-Hong Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Le Faouder, E. Bichon, P. Brunschwig, R. Landelle, F. Andre, and B. Le Bizec, “Transfer assessment of fipronil residues from feed to cow milk,” Talanta, vol. 73, no. 4, pp. 710–717, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Li, W. Wei, L. He et al., “Chlorpyrifos residual behaviors in field crops and transfers during duck pellet feed processing,” Journal of Agricultural and Food Chemistry, vol. 62, no. 42, pp. 10215–10221, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Li, X. F. Ji, L. He et al., “Evaluation of chlorpyrifos transferred from contaminated feed to duck commodities and dietary risks to Chinese consumers,” Journal of Agricultural and Food Chemistry, vol. 63, no. 21, pp. 5296–5304, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Premratanachai and C. Chanchao, “Review of the anticancer activities of bee products,” Asian Pacific Journal of Tropical Biomedicine, vol. 4, no. 5, pp. 337–344, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. M. F. Zayats, S. M. Leschev, and M. A. Zayats, “An improved extraction method of rapeseed oil sample preparation for the subsequent determination in it of azole class fungicides by gas chromatography,” Analytical Chemistry Research, vol. 3, pp. 37–45, 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. Y.-L. Di, Z.-Q. Zhu, X.-M. Lu, and F.-X. Zhu, “Baseline sensitivity and efficacy of trifloxystrobin against Sclerotinia sclerotiorum,” Crop Protection, vol. 87, pp. 31–36, 2016. View at Publisher · View at Google Scholar · View at Scopus
  7. A. David, C. Botías, A. Abdul-Sada et al., “Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops,” Environment International, vol. 88, pp. 169–178, 2016. View at Publisher · View at Google Scholar · View at Scopus
  8. G.-X. Wei, J.-K. Huang, and J. Yang, “Honey safety standards and its impacts on China's honey export,” Journal of Integrative Agriculture, vol. 11, no. 4, pp. 684–693, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Kiljanek, A. Niewiadowska, S. Semeniuk, M. Gaweł, M. Borzecka, and A. Posyniak, “Multi-residue method for the determination of pesticides and pesticide metabolites in honeybees by liquid and gas chromatography coupled with tandem mass spectrometry-Honeybee poisoning incidents,” Journal of Chromatography A, vol. 1435, pp. 100–114, 2015. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Wang, W. Cheung, and D. Leung, “Determination of pesticide residue transfer rates (percent) from dried tea leaves to brewed tea,” Journal of Agricultural and Food Chemistry, vol. 62, no. 4, pp. 966–983, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Manikandan, S. Seenivasan, M. N. K. Ganapathy, N. N. Muraleedharan, and R. Selvasundaram, “Leaching of residues of certain pesticides from black tea to brew,” Food Chemistry, vol. 113, no. 2, pp. 522–525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Rortais, G. Arnold, M.-P. Halm, and F. Touffet-Briens, “Modes of honeybees exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees,” Apidologie, vol. 36, no. 1, pp. 71–83, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Weick and R. S. Thorn, “Effects of acute sublethal exposure to coumaphos or diazinon on acquisition and discrimination of odor stimuli in the honey bee (Hymenoptera: Apidae),” Journal of Economic Entomology, vol. 95, no. 2, pp. 227–236, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. M. I. S. Škerl, Š. Velikonja Bolta, H. Baša Česnik, and A. Gregorc, “Residues of pesticides in honeybee (apis mellifera carnica) bee bread and in pollen loads from treated apple orchards,” Bulletin of Environmental Contamination and Toxicology, vol. 83, no. 3, pp. 374–377, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Ż. Bargańska, M. Ślebioda, and J. Namieśnik, “Pesticide residues levels in honey from apiaries located of Northern Poland,” Food Control, vol. 31, no. 1, pp. 196–201, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Calatayud-Vernich, F. Calatayud, E. Simó, M. M. Suarez-Varela, and Y. Picó, “Influence of pesticide use in fruit orchards during blooming on honeybee mortality in 4 experimental apiaries,” Science of the Total Environment, vol. 541, pp. 33–41, 2016. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Codling, Y. A. Naggar, J. P. Giesy, and A. J. Robertson, “Concentrations of neonicotinoid insecticides in honey, pollen and honey bees (Apis mellifera L.) in central Saskatchewan, Canada,” Chemosphere, vol. 144, pp. 2321–2328, 2016. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Lombardo-Agüí, A. M. García-Campaña, L. Gámiz-Gracia, and C. Cruces-Blanco, “Determination of quinolones of veterinary use in bee products by ultra-high performance liquid chromatography-tandem mass spectrometry using a QuEChERS extraction procedure,” Talanta, vol. 93, pp. 193–199, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Wiest, A. Buleté, B. Giroud et al., “Multi-residue analysis of 80 environmental contaminants in honeys, honeybees and pollens by one extraction procedure followed by liquid and gas chromatography coupled with mass spectrometric detection,” Journal of Chromatography A, vol. 1218, no. 34, pp. 5743–5756, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Economou, O. Petraki, D. Tsipi, and E. Botitsi, “Determination of a liquid chromatography-tandem mass spectrometry method for the determination of sulfonamides, trimethoprim and dapsone in honey and validation according to Commission Decision 2002/657/EC for banned compounds,” Talanta, vol. 97, pp. 32–41, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. J.-Z. Xu, T. Ding, B. Wu et al., “Analysis of tetracycline residues in royal jelly by liquid chromatography-tandem mass spectrometry,” Journal of Chromatography B, vol. 868, no. 1-2, pp. 42–48, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Chen, Y. Li, T. Wang, Y. Jiang, K. Li, and Y. Yu, “Microencapsulated chlorpyrifos: degradation in soil and influence on soil microbial community structures,” Journal of Environmental Sciences (China), vol. 26, no. 11, pp. 2322–2330, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. P. E. Athanasopoulos, C. Pappas, N. V. Kyriakidis, and A. Thanos, “Degradation of methamidophos on soultanina grapes on the vines and during refrigerated storage,” Food Chemistry, vol. 91, no. 2, pp. 235–240, 2005. View at Publisher · View at Google Scholar · View at Scopus