Table of Contents
Journal of Atomic, Molecular, and Optical Physics
Volume 2011, Article ID 217020, 13 pages
http://dx.doi.org/10.1155/2011/217020
Research Article

The Field Confinement, Narrow Transmission Resonances, and Green Function of a Multilayered Microsphere with Metamaterial Defects

Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, 62209 Cuernavaca, MOR, Mexico

Received 30 June 2011; Revised 3 August 2011; Accepted 6 August 2011

Academic Editor: Alan Migdall

Copyright © 2011 Gennadiy Burlak and A. Díaz-de-Anda. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Physics-Uspekhi, vol. 10, pp. 509–514, 1968. View at Google Scholar
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075–2084, 1999. View at Google Scholar · View at Scopus
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Physical Review Letters, vol. 84, no. 18, pp. 4184–4187, 2000. View at Google Scholar · View at Scopus
  4. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science, vol. 315, no. 5819, pp. 1699–1701, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photonics, vol. 1, no. 1, pp. 41–48, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Xiao, V. P. Drachev, A. V. Kildishev et al., “Loss-free and active optical negative-index metamaterials,” Nature, vol. 466, no. 7307, pp. 735–738, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Physics Letters A, vol. 137, no. 7-8, pp. 393–397, 1989. View at Google Scholar · View at Scopus
  8. V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Optics Communications, vol. 158, no. 1–6, pp. 305–312, 1998. View at Google Scholar · View at Scopus
  9. J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Physical Review A, vol. 67, no. 3, Article ID 033806, 11 pages, 2003. View at Google Scholar · View at Scopus
  10. V. Astratov, Fundamentals and Applications of Microsphere Resonator Circuits in Photonic Microresonator Research and Applications, vol. 156 of Springer Series in Optical Sciences, Springer, 2010.
  11. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, NY, USA, 1941.
  12. D. Brady, G. Papen, and J. E. Sipe, “Spherical distributed dielectric resonators,” Journal of the Optical Society of America B, vol. 10, no. 4, pp. 646–657, 1993. View at Google Scholar · View at Scopus
  13. K. G. Sullivan and D. G. Hall, “Radiation in spherically symmetric structures. I. The coupled-amplitude equations for vector spherical waves,” Physical Review A, vol. 50, no. 3, pp. 2701–2707, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Burlak, S. Koshevaya, J. Sanchez-Mondragon, and V. Grimalsky, “Electromagnetic oscillations in a multilayer spherical stack,” Optics Communications, vol. 180, no. 1, pp. 49–58, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. C. T. Chan, W. Y. Zhang, Z. L. Wang et al., “Photonic band gaps from metallo-dielectric spheres,” Physica B, vol. 279, no. 1–3, pp. 150–154, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” Journal of Applied Physics, vol. 87, no. 10, pp. 7152–7158, 2000. View at Google Scholar · View at Scopus
  17. I. Gourevich, L. M. Field, Z. Wei et al., “Polymer multilayer particles: a route to spherical dielectric resonators,” Macromolecules, vol. 39, no. 4, pp. 1449–1454, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Petukhova, A. S. Paton, Z. Wei et al., “Polymer multilayer microspheres loaded with semiconductor quantum dots,” Advanced Functional Materials, vol. 18, no. 13, pp. 1961–1968, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. G. N. Burlak, “Enhanced optical fields in a multilayered microsphere with a quasiperiodic spherical stack,” Physica Scripta, vol. 76, no. 5, pp. 571–576, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. G. N. Burlak and A. Díaz-de-Anda, “Optical fields in a multilayered microsphere with a quasiperiodic spherical stack,” Optics Communications, vol. 281, no. 1, pp. 181–189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. G. N. Burlak and A. Diaz-De-Anda, “The subwavelength optical field confinement in a multilayered microsphere with quasiperiodic spherical stack,” Advances in OptoElectronics, vol. 2008, Article ID 781524, 6 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Burlak, A. Díaz-De-Anda, R. S. Salgado, and J. P. Ortega, “Narrow transmittance peaks in a multilayered microsphere with a quasiperiodic left-handed stack,” Optics Communications, vol. 283, no. 19, pp. 3569–3577, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Mahmoodian, R. C. McPhedran, C. M. De Sterke, K. B. Dossou, C. G. Poulton, and L. C. Botten, “Single and coupled degenerate defect modes in two-dimensional photonic crystal band gaps,” Physical Review A, vol. 79, no. 1, Article ID 013814, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Physical Review Letters, vol. 105, no. 23, Article ID 233908, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Burlak, A. Zamudio-Lara, and D. Juarez, “Confinement of electromagnetic oscillations in a dielectric microsphere coated by the frequency dispersive multilayers,” Physics Letters A, vol. 289, no. 1-2, pp. 99–105, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. G. N. Burlak, “Optical radiation from coated microsphere with active core,” Physics Letters A, vol. 299, no. 1, pp. 94–101, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Moroz, “Photonic crystals of coated metallic spheres,” Europhysics Letters, vol. 50, no. 4, pp. 466–472, 2000. View at Google Scholar · View at Scopus
  28. G. Burlak and V. Grimalsky, “High quality electromagnetic oscillations in inhomogeneous coated microsphere,” Optics Communications, vol. 263, no. 2, pp. 342–349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Burlak, The Classical and Quantum Dynamics of the Multispherical Nanostructures, Imperial College Press, 2004.
  30. A. Moroz, “A recursive transfer-matrix solution for a dipole radiating inside and outside a stratified sphere,” Annals of Physics, vol. 315, no. 2, pp. 352–418, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Panofsky and M. Phillips, Classical Electricity, Addison-Wesley, 1962.
  32. M. Born and E. Wolf, Principles of Optics, Pergamon, New York, NY, USA, 1980.
  33. H. T. Dung, S. Y. Buhmann, L. Knöll, D. G. Welsch, S. Scheel, and J. Kästel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Physical Review A, vol. 68, no. 4, Article ID 043816, 15 pages, 2003. View at Google Scholar · View at Scopus
  34. R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Physical Review E, vol. 64, no. 5, Article ID 056625, 15 pages, 2001. View at Google Scholar · View at Scopus
  35. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, no. 5514, pp. 77–79, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. N. Garcia and M. Nieto-Vesperinas, “Is there an experimental verification of a negative index of refraction yet?” Optics Letters, vol. 27, no. 11, pp. 885–887, 2002. View at Google Scholar · View at Scopus
  37. P. Kinsler and M. W. McCall, “Causality-based criteria for a negative refractive index must be used with care,” Physical Review Letters, vol. 101, no. 16, Article ID 167401, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. M. I. Stockman, “Criterion for negative refraction with low optical losses from a fundamental principle of causality,” Physical Review Letters, vol. 98, no. 17, Article ID 177404, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Ajith Kumar, C. L. Nagendra, H. Ganesh Shanbhogue, and G. K. M. Thutupalli, “Near-infrared bandpass filters from Si/SiO2 multilayer coatings,” Optical Engineering, vol. 38, no. 2, pp. 368–380, 1999. View at Google Scholar · View at Scopus
  40. M. Choi, S. H. Lee, Y. Kim et al., “A terahertz metamaterial with unnaturally high refractive index,” Nature, vol. 470, no. 7334, pp. 369–373, 2011. View at Publisher · View at Google Scholar
  41. L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media, Butterworth-Heinemann, 2nd edition, 1984.
  42. S. Y. Zhu, N. H. Liu, H. Zheng, and H. Chen, “Time delay of light propagation through defect modes of one-dimensional photonic band-gap structures,” Optics Communications, vol. 174, no. 1–4, pp. 139–144, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Chew, Waves, Fields in Inhomogeneous Media, IEEE Press, New York, NY, USA, 1996.
  44. J. D. Jackson, Classical Electrodynamics, John Willey and Sons, New York, NY, USA, 1975.
  45. L. W. Li, P. S. Kooi, M. S. Leong, and T. S. Yeo, “Electromagnetic dyadic Green's function in spherically multilayered media,” IEEE Transactions on Microwave Theory and Techniques, vol. 42, no. 12, pp. 2302–2310, 1994. View at Publisher · View at Google Scholar · View at Scopus
  46. L. D. Landau and E. M. Lifschitz, Statistical Physics, Part 2, Pergamon Press, Oxford, UK, 1981.
  47. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Dover Publications, 1965.