Table of Contents
Journal of Atomic, Molecular, and Optical Physics
Volume 2011 (2011), Article ID 410108, 9 pages
http://dx.doi.org/10.1155/2011/410108
Review Article

Multiphoton Ionization and Fragmentation of Hydrogen Chloride: A Diatomic Still Good for a Surprise

1Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
2Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia

Received 1 October 2010; Revised 14 February 2011; Accepted 3 March 2011

Academic Editor: B. A. Malomed

Copyright © 2011 Christof Maul et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Manzhos, C. Romanescu, H. P. Loock, and J. G. Underwood, “Two-photon state selection and angular momentum polarization probed by velocity map imaging: application to H atom photofragment angular distributions from the photodissociation of two-photon state selected HCl and HBr,” Journal of Chemical Physics, vol. 121, no. 23, pp. 11802–11809, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Romanescu and H. P. Loock, “Photoelectron imaging following 2 + 1 multiphoton excitation of HBr,” Physical Chemistry Chemical Physics, vol. 8, no. 25, pp. 2940–2949, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Romanescu and H. P. Loock, “Proton formation in 2+1 resonance enhanced multiphoton excitation of HCl and HBr via (Ω = 0) Rydberg and ion-pair states,” Journal of Chemical Physics, vol. 127, no. 12, Article ID 124304, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. H. P. Loock, B. L. G. Bakker, and D. H. Parker, “Photodissociation of superexcited states of hydrogen iodide: a photofragment imaging study using resonant multiphoton excitation at 13.39 and 15.59 eV,” Canadian Journal of Physics, vol. 79, no. 2-3, pp. 211–227, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Roth, C. Maul, K. H. Gericke, T. Senga, and M. Kawasaki, “State and energy characterisation of fluorine atoms in the A band photodissociation of F2,” Chemical Physics Letters, vol. 305, no. 5-6, pp. 319–326, 1999. View at Google Scholar · View at Scopus
  6. D. W. Chandler and P. L. Houston, “Two-dimensional imaging of state-selected photodissociation products detected by multiphoton ionization,” The Journal of Chemical Physics, vol. 87, no. 2, pp. 1445–1447, 1986. View at Google Scholar
  7. D. H. Parker and A. T. J. B. Eppink, “Photoelectron and photofragment velocity map imaging of state-selected molecular oxygen dissociation/ionization dynamics,” Journal of Chemical Physics, vol. 107, no. 7, pp. 2357–2362, 1997. View at Google Scholar · View at Scopus
  8. A. T. J. B. Eppink and D. H. Parker, “Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen,” Review of Scientific Instruments, vol. 68, no. 9, pp. 3477–3484, 1997. View at Google Scholar · View at Scopus
  9. A. I. Chichinin, T. Einfeld, C. Maul, and K. H. Gericke, “Three-dimensional imaging technique for direct observation of the complete velocity distribution of state-selected photodissociation products,” Review of Scientific Instruments, vol. 73, no. 4, p. 1856, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. A. I. Chichinin, T. Einfeld, K.-H. Gericke, and C. Maul, “3D imaging technique—observation of the three-dimensional product momentum distribution,” in Imaging in Molecular Dynamics: Technology and Applications, B. Whitaker, Ed., Cambridge University Press, Cambridge, UK, 2003. View at Google Scholar
  11. S. Kauczok, N. Gödecke, A. I. Chichinin, M. Veckenstedt, C. Maul, and K. H. Gericke, “Three-dimensional velocity map imaging: setup and resolution improvement compared to three-dimensional ion imaging,” Review of Scientific Instruments, vol. 80, no. 8, Article ID 083301, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. I. Chichinin, K. H. Gericke, S. Kauczok, and C. Maul, “Imaging chemical reactions—3D velocity mapping,” International Reviews in Physical Chemistry, vol. 28, no. 4, pp. 607–680, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. D. S. Green, G. A. Bickel, and S. C. Wallace, “(2 + 1) resonance enhanced multiphoton ionization of hydrogen chloride in a pulsed supersonic jet: spectroscopic survey,” Journal of Molecular Spectroscopy, vol. 150, no. 2, pp. 303–353, 1991. View at Google Scholar · View at Scopus
  14. D. S. Green, G. A. Bickel, and S. C. Wallace, “(2 + 1) resonance enhanced multiphoton ionization of hydrogen chloride in a pulsed supersonic jet: spectroscopy and Rydberg ~ valence interactions of the 1Σ+(0+) and 3Σ(1, 0+) states,” Journal of Molecular Spectroscopy, vol. 150, no. 2, pp. 354–387, 1991. View at Google Scholar · View at Scopus
  15. D. S. Green, G. A. Bickel, and S. C. Wallace, “(2 + 1) resonance enhanced multiphoton ionization of hydrogen chloride in a pulsed supersonic jet: vacuum wavenumbers of rotational lines with detailed band analysis for excited electronic states of HCl,” Journal of Molecular Spectroscopy, vol. 150, no. 2, pp. 388–469, 1991. View at Google Scholar · View at Scopus
  16. Á. Kvaran, H. Wang, K. Matthiasson, A. Bodi, and E. Jónsson, “Two-dimensional (2+n) resonance enhanced multiphoton ionization of HCl: photorupture channels via the F1Δ Rydberg state and ab initio spectra,” Journal of Chemical Physics, vol. 129, no. 16, Article ID 164313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Matthíasson, H. Wang, and Á. Kvaran, “Two-dimensional (2 + n) REMPI of HCl: observation and characterisation of a new Rydberg state,” Journal of Molecular Spectroscopy, vol. 255, no. 1, pp. 1–5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. Á. Kvaran, K. Matthiasson, and H. Wang, “Two-dimensional (2+n) resonance enhanced multiphoton ionization of HCl: state interactions and photorupture channels via low-energy triplet Rydberg states,” Journal of Chemical Physics, vol. 131, no. 4, Article ID 044324, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Romanescu, S. Manzhos, D. Boldovsky, J. Clarke, and H. P. Loock, “Superexcited state reconstruction of HCl using photoelectron and photoion imaging,” Journal of Chemical Physics, vol. 120, no. 2, pp. 767–777, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. I. Chichinin, C. Maul, and K. H. Gericke, “Photoionization and photodissociation of HCl(B1Σ+, J = 0) near 236 and 239 nm using three-dimensional ion imaging,” Journal of Chemical Physics, vol. 124, no. 22, Article ID 224324, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. I. Chichinin, P. S. Shternin, N. Gödecke et al., “Intermediate state polarization in multiphoton ionization of HCl,” Journal of Chemical Physics, vol. 125, no. 3, Article ID 034310, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Kauczok, C. Maul, A. I. Chichinin, and K. H. Gericke, “Proton formation dynamics in the REMPI[2+n] process via the F1Δ2 and f3Δ2 Rydberg states of HCl investigated by three-dimensional velocity mapping,” Journal of Chemical Physics, vol. 133, Article ID 024301, 2010. View at Google Scholar
  23. A. J. Yencha, D. Kaur, R. J. Donovan et al., “Ion-pair formation in the photodissociation of HCl and DCl,” The Journal of Chemical Physics, vol. 99, no. 7, pp. 4986–4992, 1993. View at Google Scholar · View at Scopus
  24. J. B. Nee, M. Suto, and L. C. Lee, “Quantitative photoabsorption and fluorescence study of HCl in vacuum ultraviolet,” The Journal of Chemical Physics, vol. 85, no. 2, pp. 719–724, 1986. View at Google Scholar
  25. P. Natalis, P. Pennetreau, L. Longton, and J. E. Collin, “Autoionization in HCl and DCl by photoelectron spectroscopy,” Chemical Physics, vol. 73, no. 1-2, pp. 191–201, 1982. View at Google Scholar · View at Scopus
  26. H. Frohlich and M. Glass-Maujean, “Photoabsorption, photodissociation, and photoionization cross sections of HCl,” Physical Review A, vol. 42, no. 3, pp. 1396–1404, 1990. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Frohlich, P. M. Guyon, and M. Glass-Maujean, “HCl+ X vibrational states investigated from the HCl threshold photoelectron spectrum,” Physical Review A, vol. 44, no. 3, pp. 1791–1795, 1991. View at Publisher · View at Google Scholar · View at Scopus
  28. E. de Beer, B. G. Koenders, M. P. Koopmans, and C. A. de Lange, “Multiphoton ionization processes in HCl studied by photoelectron spectroscopy,” Journal of the Chemical Society, Faraday Transactions, vol. 86, no. 11, pp. 2035–2041, 1990. View at Publisher · View at Google Scholar · View at Scopus
  29. A. D. Pradhan, K. P. Kirby, and A. Dalgarno, “Theoretical study of HCl: potential curves, radiative lifetimes, and photodissociation cross sections,” The Journal of Chemical Physics, vol. 95, no. 12, pp. 9009–9023, 1991. View at Google Scholar · View at Scopus
  30. E. F. van Dishoeck, M. C. van Hemert, and A. Dalgarno, “Photodissociation processes in the HCl molecule,” The Journal of Chemical Physics, vol. 77, no. 7, pp. 3693–3702, 1982. View at Google Scholar · View at Scopus
  31. Y. F. Zhu, E. R. Grant, K. Wang, V. McKoy, and H. Lefebvre-Brion, “Spin-orbit autoionization and intensities in the double-resonant delayed pulsed-field threshold photoionization of HCl,” The Journal of Chemical Physics, vol. 100, no. 12, pp. 8633–8640, 1994. View at Google Scholar · View at Scopus
  32. H. Lefebvre-Brion and F. Keller, “Competition between autoionization and predissociation in the HCl and DCl molecules,” The Journal of Chemical Physics, vol. 90, no. 12, pp. 7176–7183, 1989. View at Google Scholar · View at Scopus
  33. P. J. Bruna and S. D. Peyerimhoff, “Excited-state potentials,” in Ab Initio Methods in Quantum Chemistry, K. P. Lawley, Ed., John Wiley & Sons, New York, NY, USA, 1987. View at Google Scholar
  34. R. Liyanage, R. J. Gordon, and R. W. Field, “Diabatic analysis of the electronic states of hydrogen chloride,” Journal of Chemical Physics, vol. 109, no. 19, pp. 8374–8387, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Bettendorff, S. D. Peyerimhoff, and R. J. Buenker, “Clarification of the assignment of the electronic spectrum of hydrogen chloride based on ab initio cl calculations,” Chemical Physics, vol. 66, no. 3, pp. 261–279, 1982. View at Google Scholar · View at Scopus
  36. L. Singleton and P. Brint, “Calculation of the Rydberg-state energies of HCl,” Journal of the Chemical Society, Faraday Transactions, vol. 93, no. 1, pp. 21–23, 1997. View at Google Scholar · View at Scopus
  37. Y. Li, O. Bludsky, G. Hirsch, and R. J. Buenker, “Ab initio configuration interaction study of the predissociation of the (4s), (4pσ) 1,3Π, and (4pπ) 3Σ+ Rydberg states of HCl and DCl,” Journal of Chemical Physics, vol. 112, no. 1, pp. 260–267, 2000. View at Google Scholar · View at Scopus
  38. J. Pitarch-Ruiz, A. Sánchez de Merás, J. Sánchez-Marín, A. M. Velasco, C. Lavín, and I. Martín, “Low-lying Rydberg states of HCl,” Journal of Physical Chemistry A, vol. 112, no. 14, pp. 3275–3280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Song, K. Liu, F. A. Kong, J. Li, and Y. Mo, “Ion-Pair dissociation dynamics of HCl: fast predissociation,” Journal of Physical Chemistry A, vol. 113, no. 17, pp. 4919–4922, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Vazquez and H. Lefebvre-Brion, private communication.
  41. H. Lefebvre-Brion and R. W. Field, The Spectra and Dynamics of Diatomic Molecules, Elsevier, Amsterdam, The Netherlands, 2004.
  42. E. R. Davidson, “First excited Σg+1 state of the hydrogen molecule,” The Journal of Chemical Physics, vol. 35, pp. 1189–1202, 1961. View at Google Scholar · View at Scopus
  43. P. J. Hay and D. C. Cartwright, “Rydberg, ionic, and valence interactions in the excited states of F,” Chemical Physics Letters, vol. 41, no. 1, pp. 80–83, 1976. View at Google Scholar · View at Scopus
  44. S. D. Peyerimhoff and R. J. Buenker, “Electronically excited and ionized states of the chlorine molecule,” Chemical Physics, vol. 57, no. 3, pp. 279–296, 1981. View at Google Scholar · View at Scopus
  45. R. de Vivie and S. D. Peyerimhoff, “Theoretical spectroscopy of the NO radical. I. Potential curves and lifetimes of excited states,” The Journal of Chemical Physics, vol. 89, no. 5, pp. 3028–3043, 1988. View at Google Scholar · View at Scopus
  46. M. Łukomski, J. Koperski, and M. Czajkowski, “Double-well potential energy curve of cadmium-krypton molecule in the B1(53P1) excited state,” Spectrochimica Acta A, vol. 58, no. 8, pp. 1757–1767, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. E. Czuchaj, M. Kronicki, and H. Stoll, “Quasirelativistic valence ab initio calculation of the potential curves for the Zn-rare gas van der Waals molecules,” Chemical Physics, vol. 265, no. 3, pp. 291–299, 2001. View at Publisher · View at Google Scholar · View at Scopus