Table of Contents
Journal of Atomic, Molecular, and Optical Physics
Volume 2012, Article ID 236793, 11 pages
Research Article

Polymorphism, Hydrogen Bond Properties, and Vibrational Structure of 1H-Pyrrolo[3,2-h]Quinoline Dimers

1Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
2Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA

Received 29 February 2012; Accepted 30 May 2012

Academic Editor: Paul Blaise

Copyright © 2012 Alexandr Gorski et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Two forms of cyclic, doubly hydrogen-bonded dimers are discovered for crystalline 1H-pyrrolo[3,2-h]quinoline, a bifunctional molecule possessing both hydrogen bond donor and acceptor groups. One of the forms is planar, the other is twisted. Analysis of IR and Raman spectra, combined with DFT calculations, allows one to assign the observed vibrations and to single out vibrational transitions which can serve as markers of hydrogen bond formation and dimer structure. Raman spectra measured for samples submitted to high pressure indicate a transition from the planar towards the twisted structure. Formation of intermolecular hydrogen bonds leads to a large increase of the Raman intensity of the NH stretching band: it can be readily observed for the dimer, but is absent in the monomer spectrum.