Table of Contents Author Guidelines Submit a Manuscript
Journal of Aging Research
Volume 2011, Article ID 103253, 14 pages
http://dx.doi.org/10.4061/2011/103253
Research Article

Self-Renewal Signalling in Presenescent Tetraploid IMR90 Cells

1Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067 Riga, Latvia
2Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia

Received 15 December 2010; Revised 22 February 2011; Accepted 25 February 2011

Academic Editor: Noam Shomron

Copyright © 2011 Anda Huna et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. W. Shay and I. B. Roninson, “Hallmarks of senescence in carcinogenesis and cancer therapy,” Oncogene, vol. 23, no. 16, pp. 2919–2933, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. F. D'Adda Di Fagagna, “Living on a break: cellular senescence as a DNA-damage response,” Nature Reviews Cancer, vol. 8, no. 7, pp. 512–522, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. D. W. Meek, “Tumour suppression by p53: a role for the DNA damage response?” Nature Reviews Cancer, vol. 9, no. 10, pp. 714–723, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Finkel, M. Serrano, and M. A. Blasco, “The common biology of cancer and ageing,” Nature, vol. 448, no. 7155, pp. 767–774, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Collado and M. Serrano, “Senescence in tumours: evidence from mice and humans,” Nature Reviews Cancer, vol. 10, no. 1, pp. 51–57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Hayflick and P. S. Moorhead, “The serial cultivation of human diploid cell strains,” Experimental Cell Research, vol. 25, no. 3, pp. 585–621, 1961. View at Google Scholar · View at Scopus
  7. E. Saksela and P. S. Moorhead, “Aneuploidy in the degenerative phase of serial cultivation of human cell strains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 50, pp. 390–395, 1963. View at Google Scholar
  8. B. A. Houghton and G. H. Stidworthy, “A growth history comparison of the human diploid cells WI-38 and IMR-90: proliferative capacity and cell sizing analysis,” In Vitro, vol. 15, no. 9, pp. 697–702, 1979. View at Google Scholar · View at Scopus
  9. K. H. Walen, “Budded karyoplasts from multinucleated fibroblast cells contain centrosomes and change their morphology to mitotic cells,” Cell Biology International, vol. 29, no. 12, pp. 1057–1065, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. K. H. Walen, “Human diploid fibroblast cells in senescence; cycling through polyploidy to mitotic cells,” In Vitro Cellular and Developmental Biology, vol. 42, no. 7, pp. 216–224, 2006. View at Google Scholar · View at Scopus
  11. K. H. Walen, “Origin of diplochromosomal polyploidy in near-senescent fibroblast cultures: heterochromatin, telomeres and chromosomal instability (CIN),” Cell Biology International, vol. 31, no. 12, pp. 1447–1455, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. K. H. Walen, “Bipolar genome reductional division of human near-senescent, polyploid fibroblast cells,” Cancer Genetics and Cytogenetics, vol. 173, no. 1, pp. 43–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. B. Harley, “Telomere loss: mitotic clock or genetic time bomb?” Mutation Research, vol. 256, no. 2-6, pp. 271–282, 1991. View at Google Scholar · View at Scopus
  14. J. R. Smith and O. M. Pereira-Smith, “Replicative senescence: implications for in vivo aging and tumor suppression,” Science, vol. 273, no. 5271, pp. 63–67, 1996. View at Google Scholar · View at Scopus
  15. R. A. DePinho, “The age of cancer,” Nature, vol. 408, no. 6809, pp. 248–254, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. N. J. Ganem and D. Pellman, “Limiting the proliferation of polyploid cells,” Cell, vol. 131, no. 3, pp. 437–440, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. K. H. Walen, “Genetic stability of senescence reverted cells: genome reduction division of polyploidy cells, aneuploidy and neoplasia,” Cell Cycle, vol. 7, no. 11, pp. 1623–1629, 2008. View at Google Scholar · View at Scopus
  18. E. M. Torres, N. Dephoure, A. Panneerselvam et al., “Identification of aneuploidy-tolerating mutations,” Cell, vol. 143, no. 1, pp. 71–83, 2010. View at Publisher · View at Google Scholar
  19. S. R. Romanov, B. K. Kozakiewicz, C. R. Holst, M. R. Stampfer, L. M. Haupt, and T. D. Tlsty, “Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes,” Nature, vol. 409, no. 6820, pp. 633–637, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. M. L. Friedlander, D. W. Hedley, and I. W. Taylor, “Clinical and biological significance of aneuploidy in human tumours,” Journal of Clinical Pathology, vol. 37, no. 9, pp. 961–974, 1984. View at Google Scholar · View at Scopus
  21. T. M. Illidge, M. S. Cragg, B. Fringes, P. Olive, and J. A. Erenpreisa, “Polyploid giant cells provide a survival mechanism for p53 mutant cells after DNA damage,” Cell Biology International, vol. 24, no. 9, pp. 621–633, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Sundaram, D. L. Guernsey, M. M. Rajaraman, and R. Rajaraman, “Neosis: a novel type of cell division in cancer,” Cancer Biology and Therapy, vol. 3, no. 2, pp. 207–218, 2004. View at Google Scholar · View at Scopus
  23. P. E. Puig, M. N. Guilly, A. Bouchot et al., “Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy,” Cell Biology International, vol. 32, no. 9, pp. 1031–1043, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Vitale, L. Senovilla, M. Jema et al., “Multipolar mitosis of tetraploid cells: inhibition by p53 and dependency on Mos,” EMBO Journal, vol. 29, no. 7, pp. 1272–1284, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. I. B. Roninson, “Tumor cell senescence in cancer treatment,” Cancer Research, vol. 63, no. 11, pp. 2705–2715, 2003. View at Google Scholar · View at Scopus
  26. J. Erenpreisa, M. S. Cragg, K. Salmina, M. Hausmann, and H. Scherthan, “The role of meiotic cohesin REC8 in chromosome segregation in γ irradiation-induced endopolyploid tumour cells,” Experimental Cell Research, vol. 315, no. 15, pp. 2593–2603, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Ianzini, E. A. Kosmacek, E. S. Nelson et al., “Activation of meiosis-specific genes is associated with depolyploidization of human tumor cells following radiation-induced mitotic catastrophe,” Cancer Research, vol. 69, no. 6, pp. 2296–2304, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Salmina, E. Jankevics, A. Huna et al., “Up-regulation of the embryonic self-renewal network through reversible polyploidy in irradiated p53-mutant tumour cells,” Experimental Cell Research, vol. 316, no. 13, pp. 2099–2112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Erenpreisa, K. Salmina, A. Huna et al., “Polyploid tumour cells elicit para-diploid progeny through de-polyploidisation divisions and regulated autophagy,” Cell Biology International, 2011. View at Publisher · View at Google Scholar
  30. Z. Storchova and D. Pellman, “From polyploidy to aneuploidy, genome instability and cancer,” Nature Reviews Molecular Cell Biology, vol. 5, no. 1, pp. 45–54, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Mosieniak and E. Sikora, “Polyploidy: the link between senescence and cancer,” Current Pharmaceutical Design, vol. 16, no. 6, pp. 734–740, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Castedo, I. Vitale, and G. Kroemer, “A novel source of tetraploid cancer cell precursors: telomere insufficiency links aging to oncogenesis,” Oncogene, vol. 29, no. 44, pp. 5869–5872, 2010. View at Publisher · View at Google Scholar
  33. A. Carnero, “Targeting the cell cycle for cancer therapy,” British Journal of Cancer, vol. 87, no. 2, pp. 129–133, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Vergel, J. J. Marin, P. Estevez, and A. Carnero, “Cellular senescence as a target in cancer control,” Journal of Aging Research, vol. 2011, Article ID 725365, 12 pages, 2011. View at Publisher · View at Google Scholar
  35. J. Erenpreisa and T. Freivalds, “Anisotropic staining of apurinic acid with toluidine blue,” Histochemistry, vol. 60, no. 3, pp. 321–325, 1979. View at Google Scholar · View at Scopus
  36. Q. Chen, A. Fischer, J. D. Reagan, L. J. Yan, and B. N. Ames, “Oxidative DNA damage and senescence of human diploid fibroblast cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 10, pp. 4337–4341, 1995. View at Google Scholar · View at Scopus
  37. E. Therman and M. Susman, Human Chromosomes: Structure, Behaviour, and Effects, Springer, New York, NY, USA, 1973.
  38. C. J. Epstein, “Cell size, nuclear content and the development of polyploidy in the mammalian liver,” Proceedings of the National Academy of Sciences of the United States of America, vol. 57, pp. 327–334, 1967. View at Google Scholar
  39. J. Erenpreisa, A. Ivanov, S. P. Wheatley et al., “Endopolyploidy in irradiated p53-deficient tumour cell lines: persistence of cell division activity in giant cells expressing Aurora-B kinase,” Cell Biology International, vol. 32, no. 9, pp. 1044–1056, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Davoli, E. L. Denchi, and T. de Lange, “Persistent telomere damage induces bypass of mitosis and tetraploidy,” Cell, vol. 141, no. 1, pp. 81–93, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. P. R. Andreassen, F. B. Lacroix, O. D. Lohez, and R. L. Margolis, “Neither p21 nor 14-3-3σ prevents G progression to mitotic catastrophe in human colon carcinoma cells after DNA damage, but p21 induces stable G arrest in resulting tetraploid cells,” Cancer Research, vol. 61, no. 20, pp. 7660–7668, 2001. View at Google Scholar · View at Scopus
  42. R. L. Margolis, “Tetraploidy and tumor development,” Cancer Cell, vol. 8, no. 5, pp. 353–354, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. S. W. Sherwood, D. Rush, J. L. Ellsworth, and R. T. Schimke, “Defining cellular senescence in IMR-90 cells: a flow cytometric analysis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 23, pp. 9086–9090, 1988. View at Google Scholar · View at Scopus
  44. D. X. Mason, T. J. Jackson, and A. W. Lin, “Molecular signature of oncogenic ras-induced senescence,” Oncogene, vol. 23, no. 57, pp. 9238–9246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. X. Zhang, I. Neganova, S. Przyborski et al., “A role for NANOG in G1 to S transition in human embryonic stem cells through direct binding of CDK6 and CDC25A,” Journal of Cell Biology, vol. 184, no. 1, pp. 67–82, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Fåhraeus, S. Laín, K. L. Ball, and D. P. Lane, “Characterization of the cyclin-dependent kinase inhibitory domain of the INK4 family as a model for a synthetic tumour suppressor molecule,” Oncogene, vol. 16, no. 5, pp. 587–596, 1998. View at Google Scholar · View at Scopus
  47. C. Mantel, Y. Guo, R. L. Man et al., “Checkpoint-apoptosis uncoupling in human and mouse embryonic stem cells: a source of karyotpic instability,” Blood, vol. 109, no. 10, pp. 4518–4527, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. C. M. Beauséjour, A. Krtolica, F. Galimi et al., “Reversal of human cellular senescence: roles of the p53 and p16 pathways,” EMBO Journal, vol. 22, no. 16, pp. 4212–4222, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. Q. Deng, R. Liao, B. L. Wu, and P. Sun, “High intensity ras signaling induces premature senescence by activating p38 pathway in primary human fibroblasts,” Journal of Biological Chemistry, vol. 279, no. 2, pp. 1050–1059, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Lin, C. Chao, S. Saito et al., “p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression,” Nature Cell Biology, vol. 7, no. 2, pp. 165–171, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. U. Riekstina, I. Cakstina, V. Parfejevs et al., “Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis,” Stem Cell Reviews and Reports, vol. 5, no. 4, pp. 378–386, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. A. W. Lin, M. Barradas, J. C. Stone, L. Van Aelst, M. Serrano, and S. W. Lowe, “Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling,” Genes and Development, vol. 12, no. 19, pp. 3008–3019, 1998. View at Google Scholar · View at Scopus
  53. J. N. Lavoie, G. L'Allemain, A. Brunei, R. Müller, and J. Pouysségur, “Cyclin D1 expression is regulated positively by the p42/p44(MAPK) and negatively by the p38/HOG(MAPK) pathway,” Journal of Biological Chemistry, vol. 271, no. 34, pp. 20608–20616, 1996. View at Publisher · View at Google Scholar · View at Scopus
  54. T. Hamazaki, S. M. Kehoe, T. Nakano, and N. Terada, “The Grb2/Mek pathway represses nanog in murine embryonic stem cells,” Molecular and Cellular Biology, vol. 26, no. 20, pp. 7539–7549, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Banito, S. T. Rashid, J. C. Acosta et al., “Senescence impairs successful reprogramming to pluripotent stem cells,” Genes and Development, vol. 23, no. 18, pp. 2134–2139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. R. Y. L. Tsai and R. D. G. McKay, “A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells,” Genes and Development, vol. 16, no. 23, pp. 2991–3003, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Ma and T. Pederson, “Nucleophosmin is a binding partner of nucleostemin in human osteosarcoma cells,” Molecular Biology of the Cell, vol. 19, no. 7, pp. 2870–2875, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. J. D. Weber, L. J. Taylor, M. F. Roussel, C. J. Sherr, and D. Bar-Sagi, “Nucleolar Arf sequesters Mdm2 and activates p53,” Nature Cell Biology, vol. 1, no. 1, pp. 20–26, 1999. View at Google Scholar · View at Scopus
  59. J. Huang, J. Lin, R. Jin et al., “Relocation of hTERT from nucleoplasm to nucleoli induces cancer cells senescence without affecting telomerase activity,” AACR Meeting Abstracts, 2005, abstracts 1022. View at Google Scholar
  60. R. Bernardi, P. P. Scaglioni, S. Bergmann, H. F. Horn, K. H. Vousden, and P. P. Pandolfi, “PML regulates p53 stability by sequestering Mdm2 to the nucleolus,” Nature Cell Biology, vol. 6, no. 7, pp. 665–672, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. T. W. Glover, C. Berger, J. Coyle, and B. Echo, “DNA polymerase α inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes,” Human Genetics, vol. 67, no. 2, pp. 136–142, 1984. View at Google Scholar · View at Scopus
  62. J. Z. Torres, J. B. Bessler, and V. A. Zakian, “Local chromatin structure at the ribosomal DNA causes replication fork pausing and genome instability in the absence of the S. cerevisiae DNA helicase Rrm3p,” Genes and Development, vol. 18, no. 5, pp. 498–503, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. A. M. Casper, P. A. Mieczkowski, M. Gawel, and T. D. Petes, “Low levels of DNA polymerase alpha induce mitotic and meiotic instability in the ribosomal DNA gene cluster of Saccharomyces cerevisiae,” PLoS Genetics, vol. 4, no. 6, article e1000105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. V. G. Gorgoulis, L. V. F. Vassiliou, P. Karakaidos et al., “Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions,” Nature, vol. 434, no. 7035, pp. 907–913, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Bartkova, Z. Hořejší, K. Koed et al., “DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis,” Nature, vol. 434, no. 7035, pp. 864–870, 2005. View at Publisher · View at Google Scholar · View at Scopus