Table of Contents Author Guidelines Submit a Manuscript
Journal of Aging Research
Volume 2011 (2011), Article ID 136435, 10 pages
http://dx.doi.org/10.4061/2011/136435
Review Article

The Role of the Mitochondrial Genome in Ageing and Carcinogenesis

1Laboratory of Molecular Oncology, Department of Oncology, Military Institute of Medicine, ul. Szaserów 128, 01-141 Warsaw, Poland
2Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
3Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland

Received 29 October 2010; Accepted 3 January 2011

Academic Editor: Alberto Sanz

Copyright © 2011 Anna M. Czarnecka and Ewa Bartnik. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. C. Wallace, “Mitochondrial DNA mutations in disease and aging,” Environmental and Molecular Mutagenesis, vol. 51, no. 5, pp. 440–450, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. D. C. Wallace, “A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine,” Annual Review of Genetics, vol. 39, pp. 359–407, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. A. M. Czarnecka and E. Bartnik, “Mitochondrial DNA mutations in tumors,” in Cellular Respiration and Carcinogenesis, S. P. Apte and R. Sarangarajan, Eds., pp. 1–12, Humana Press, New York, NY, USA, 2009. View at Google Scholar
  4. A. M. Czarnecka et al., “Cancer as a “Mitochondriopathy”,” Journal of Cancer Molecules, vol. 3, no. 3, pp. 71–79, 2007. View at Google Scholar
  5. O. Warburg, “On the origin of cancer cells,” Science, vol. 123, no. 3191, pp. 309–314, 1956. View at Google Scholar · View at Scopus
  6. E. Gottlieb and I. P. M. Tomlinson, “Mitochondrial tumour suppressors: a genetic and biochemical update,” Nature Reviews Cancer, vol. 5, no. 11, pp. 857–866, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. R. J. Gillies and R. A. Gatenby, “Hypoxia and adaptive landscapes in the evolution of carcinogenesis,” Cancer and Metastasis Reviews, vol. 26, no. 2, pp. 311–317, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Simonnet, N. Alazard, K. Pfeiffer et al., “Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma,” Carcinogenesis, vol. 23, no. 5, pp. 759–768, 2002. View at Google Scholar · View at Scopus
  9. M. Kulawiec, K. M. Owens, and K. K. Singh, “Cancer cell mitochondria confer apoptosis resistance and promote metastasis,” Cancer Biology and Therapy, vol. 8, no. 14, pp. 69–76, 2009. View at Google Scholar · View at Scopus
  10. D. J. Smiraglia, M. Kulawiec, G. L. Bistulfi, S. G. Gupta, and K. K. Singh, “A novel role for mitochondria in regulating epigenetic modification in the nucleus,” Cancer Biology and Therapy, vol. 7, no. 8, pp. 1182–1190, 2008. View at Google Scholar · View at Scopus
  11. M. Brandon, P. Baldi, and D. C. Wallace, “Mitochondrial mutations in cancer,” Oncogene, vol. 25, no. 34, pp. 4647–4662, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. M. Czarnecka, P. Golik, and E. Bartnik, “Mitochondrial DNA mutations in human neoplasia,” Journal of Applied Genetics, vol. 47, no. 1, pp. 67–78, 2006. View at Google Scholar · View at Scopus
  13. A. M. Czarnecka, W. Kukwa, T. Krawczyk, A. Scinska, A. Kukwa, and F. Cappello, “Mitochondrial DNA mutations in cancer —from bench to bedside,” Frontiers in Bioscience, vol. 15, pp. 437–460, 2010. View at Google Scholar · View at Scopus
  14. K. Khrapko and J. Vijg, “Mitochondrial DNA mutations and aging: a case closed?” Nature Genetics, vol. 39, no. 4, pp. 445–446, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Ishikawa, K. Takenaga, M. Akimoto et al., “ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis,” Science, vol. 320, no. 5876, pp. 661–664, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. R. S. Arnold, C. Q. Sun, J. C. Richards et al., “Mitochondrial DNA mutation stimulates prostate cancer growth in bone stromal environment,” Prostate, vol. 69, no. 1, pp. 1–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. A. Petros, A. K. Baumann, E. Ruiz-Pesini et al., “MtDNA mutations increase tumorigenicity in prostate cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 3, pp. 719–724, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Linnartz, R. Anglmayer, and S. Zanssen, “Comprehensive scanning of somatic mitochondrial DNA alterations in acute leukemia developing from myelodysplastic syndromes,” Cancer Research, vol. 64, no. 6, pp. 1966–1971, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. A. M. Czarnecka, T. Krawczyk, M. Zdrozny et al., “Mitochondrial NADH-dehydrogenase subunit 3 (ND3) polymorphism (A10398G) and sporadic breast cancer in Poland,” Breast Cancer Research and Treatment, vol. 121, no. 2, pp. 511–518, 2010. View at Publisher · View at Google Scholar
  20. A. M. Czarnecka, A. Klemba, T. Krawczyk et al., “Mitochondrial NADH-dehydrogenase polymorphisms as sporadic breast cancer risk factor,” Oncology Reports, vol. 23, no. 2, pp. 531–535, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Plak, W. Kukwa, E. Bartnik et al., “The impact of mtDNA mutations on proteins structure in selected types of cancer,” Postepy Biochemii, vol. 54, no. 2, pp. 151–160, 2008. View at Google Scholar · View at Scopus
  22. G. Pietka, W. Kukwa, E. Bartnik, A. Ścińska, and A. M. Czarnecka, “Mitochondrial DNA mutations in the pathogenesis in the head and neck squamous cell carcinoma,” Otolaryngologia Polska, vol. 62, no. 2, pp. 158–164, 2008. View at Google Scholar · View at Scopus
  23. K. Ishikawa, N. Koshikawa, K. Takenaga, K. Nakada, and J. I. Hayashi, “Reversible regulation of metastasis by ROS-generating mtDNA mutations,” Mitochondrion, vol. 8, no. 4, pp. 339–344, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. S. DiMauro, “Mitochondrial diseases,” Biochimica et Biophysica Acta, vol. 1658, no. 1-2, pp. 80–88, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. J. S. Carew and P. Huang, “Mitochondrial defects in cancer,” Molecular Cancer, vol. 1, article 9, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. A. M. Czarnecka, A. Klemba, A. Semczuk et al., “Common mitochondrial polymorphisms as risk factor for endometrial cancer,” International Archives of Medicine, vol. 2, no. 1, article 33, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. A. M. Czarnecka, T. Krawczyk, K. Plak et al., “Mitochondrial genotype and breast cancer predisposition,” Oncology Reports, vol. 24, no. 6, pp. 1521–1534, 2010. View at Publisher · View at Google Scholar
  28. A. Klemba, M. Kowalewska, W. Kukwa et al., “Mitochondrial genotype in vulvar carcinoma—cuckoo in the nest,” Journal of Biomedical Science, vol. 17, no. 1, article 73, 2010. View at Publisher · View at Google Scholar
  29. E. Theodoratou, F. V. N. Din, S. M. Farrington et al., “Association between common mtDNA variants and all-cause or colorectal cancer mortality,” Carcinogenesis, vol. 31, no. 2, pp. 296–301, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. A. A. Kazuno, K. Munakata, T. Nagai et al., “Identification of mitochondrial DNA polymorphisms that alter mitochondrial matrix pH and intracellular calcium dynamics,” PLoS Genetics, vol. 2, no. 8, article e128, pp. 1167–1177, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Baysal, “Mitochondria: more than mitochondrial DNA in cancer,” PLoS Medicine, vol. 3, no. 3, article e156, pp. 413–414, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. A. S. Don and P. J. Hogg, “Mitochondria as cancer drug targets,” Trends in Molecular Medicine, vol. 10, no. 8, pp. 372–378, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Vives-Bauza, R. Gonzalo, G. Manfredi, E. Garcia-Arumi, and A. L. Andreu, “Enhanced ROS production and antioxidant defenses in cybrids harbouring mutations in mtDNA,” Neuroscience Letters, vol. 391, no. 3, pp. 136–141, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Kakkar and B. K. Singh, “Mitochondria: a hub of redox activities and cellular distress control,” Molecular and Cellular Biochemistry, vol. 305, no. 1-2, pp. 235–253, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Shidara, K. Yamagata, T. Kanamori et al., “Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis,” Cancer Research, vol. 65, no. 5, pp. 1655–1663, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Amuthan, G. Biswas, S. Y. Zhang, A. Klein-Szanto, C. Vijayasarathy, and N. G. Avadhani, “Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion,” EMBO Journal, vol. 20, no. 8, pp. 1910–1920, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Kulawiec, H. Arnouk, M. M. Desouki, L. Kazim, I. Still, and K. K. Singh, “Proteomic analysis of mitochondria-to-nucleus retrograde response in human cancer,” Cancer Biology and Therapy, vol. 5, no. 8, pp. 967–975, 2006. View at Google Scholar · View at Scopus
  38. K. K. Singh, M. Kulawiec, I. Still, M. M. Desouki, J. Geradts, and S. I. Matsui, “Inter-genomic cross talk between mitochondria and the nucleus plays an important role in tumorigenesis,” Gene, vol. 354, no. 1-2, pp. 140–146, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Desler, B. Munch-Petersen, T. Stevnsner et al., “Mitochondria as determinant of nucleotide pools and chromosomal stability,” Mutation Research, vol. 625, no. 1-2, pp. 112–124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Ishikawa, O. Hashizume, N. Koshikawa et al., “Enhanced glycolysis induced by mtDNA mutations does not regulate metastasis,” FEBS Letters, vol. 582, no. 23-24, pp. 3525–3530, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Salas, Y. G. Yao, V. Macaulay, A. Vega, Á. Carracedo, and H. J. Bandelt, “A critical reassessment of the role of mitochondria in tumorigenesis,” PLoS Medicine, vol. 2, no. 11, article e296, pp. 1158–1166, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. H. J. Bandelt, A. Achilli, Q. P. Kong et al., “Low “penetrance” of phylogenetic knowledge in mitochondrial disease studies,” Biochemical and Biophysical Research Communications, vol. 333, no. 1, pp. 122–130, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. H. J. Bandelt, Y. G. Yao, A. Salas, T. Kivisild, and C. M. Bravi, “High penetrance of sequencing errors and interpretative shortcomings in mtDNA sequence analysis of LHON patients,” Biochemical and Biophysical Research Communications, vol. 352, no. 2, pp. 283–291, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. H. J. Bandelt and A. Salas, “Contamination and sample mix-up can best explain some patterns of mtDNA instabilities in buccal cells and oral squamous cell carcinoma,” BMC Cancer, vol. 9, article no. 113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. H. J. Bandelt, P. Lahermo, M. Richards, and V. Macaulay, “Detecting errors in mtDNA data by phylogenetic analysis,” International Journal of Legal Medicine, vol. 115, no. 2, pp. 64–69, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Brandstätter, T. Sänger, S. Lutz-Bonengel et al., “Phantom mutation hotspots in human mitochondrial DNA,” Electrophoresis, vol. 26, no. 18, pp. 3414–3429, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. A. M. Czarnecka et al., “Methodology for mitochondrial DNA research in oncology: goals and pitfalls,” ARS Medica Tomitana, vol. 14, no. 1, pp. 48–64, 2008. View at Google Scholar
  48. H. J. Bandelt, Y. G. Yao, C. M. Bravi, A. Salas, and T. Kivisild, “Median network analysis of defectively sequenced entire mitochondrial genomes from early and contemporary disease studies,” Journal of Human Genetics, vol. 54, no. 3, pp. 174–181, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. G. Yao, C. M. Bravi, and H. J. Bandelt, “A call for mtDNA data quality control in forensic science,” Forensic Science International, vol. 141, no. 1, pp. 1–6, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. V. W. Setiawan, L. H. Chu, E. M. John et al., “Mitochondrial DNA G10398A variant is not associated with breast cancer in African-American women,” Cancer Genetics and Cytogenetics, vol. 181, no. 1, pp. 16–19, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Darvishi, S. Sharma, A. K. Bhat, E. Rai, and R. N. K. Bamezai, “Mitochondrial DNA G10398A polymorphism imparts maternal Haplogroup N a risk for breast and esophageal cancer,” Cancer Letters, vol. 249, no. 2, pp. 249–255, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. M. P. Mims, T. G. Hayes, S. Zheng et al., “Mitochondrial DNA G10398A polymorphism and invasive breast cancer in African-American women,” Cancer Research, vol. 66, no. 3, p. 1880, 2006. View at Publisher · View at Google Scholar
  53. R. M. Andrews, I. Kubacka, P. F. Chinnery, R. N. Lightowlers, D. M. Turnbull, and N. Howell, “Reanalysis and revision of the cambridge reference sequence for human mitochondrial DNA,” Nature Genetics, vol. 23, no. 2, p. 147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Ingman and U. Gyllensten, “mtDB: human mitochondrial genome database, a resource for population genetics and medical sciences,” Nucleic Acids Research, vol. 34, pp. D749–751, 2006. View at Google Scholar · View at Scopus
  55. E. Ruiz-Pesini, M. T. Lott, V. Procaccio et al., “An enhanced MITOMAP with a global mtDNA mutational phylogeny,” Nucleic Acids Research, vol. 35, no. 1, pp. D823–D828, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. J. M. van der Walt, K. K. Nicodemus, E. R. Martin et al., “Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease,” American Journal of Human Genetics, vol. 72, no. 4, pp. 804–811, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. J. M. van der Walt, Y. A. Dementieva, E. R. Martin et al., “Analysis of European mitochondrial haplogroups with Alzheimer disease risk,” Neuroscience Letters, vol. 365, no. 1, pp. 28–32, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Mancuso, F. L. Conforti, A. Rocchi et al., “Could mitochondrial haplogroups play a role in sporadic amyotrophic lateral sclerosis?” Neuroscience Letters, vol. 371, no. 2-3, pp. 158–162, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Giacchetti, A. Monticelli, I. De Biase et al., “Mitochondrial DNA haplogroups influence the Friedreich's ataxia phenotype,” Journal of Medical Genetics, vol. 41, no. 4, pp. 293–295, 2004. View at Google Scholar · View at Scopus
  60. J. A. Canter, A. R. Kallianpur, F. F. Parl, and R. C. Millikan, “Mitochondrial DNA G10398A polymorphism and invasive breast cancer in African-American women,” Cancer Research, vol. 65, no. 17, pp. 8028–8033, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. D. Covarrubias, R. K. Bai, L. J. C. Wong, and S. M. Leal, “Mitochondrial DNA variant interactions modify breast cancer risk,” Journal of Human Genetics, vol. 53, no. 10, pp. 924–928, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Tanaka, T. Takeyasu, N. Fuku, G. Li-Jun, and M. Kurata, “Mitochondrial genome single nucleotide polymorphisms and their phenotypes in the Japanese,” Annals of the New York Academy of Sciences, vol. 1011, pp. 7–20, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. S. R. Krystek, W. J. Metzler, and J. Novotny, “Hydrophobicity profiles for protein sequence analysis,” in Current Protocols in Protein Science, chapter 2, unit 2.2, 2001. View at Google Scholar · View at Scopus
  64. R. Grantham, “Amino acid difference formula to help explain protein evolution,” Science, vol. 185, no. 4154, pp. 862–864, 1974. View at Google Scholar · View at Scopus
  65. M. J. Betts and R. B. Russell, “Amino acid properties and consequences of substitutions,” in Bioinformatics for Geneticists, I. C. G. Michael and R. Barnes, Eds., pp. 289–316, 2003. View at Google Scholar
  66. C. Tanford, “The interpretation of hydrogen ion titration curves of proteins,” Advances in Protein Chemistry, vol. 17, pp. 69–165, 1962. View at Google Scholar
  67. M. Gómez-Zaera, J. Abril, L. González et al., “Identification of somatic and germline mitochondrial DNA sequence variants in prostate cancer patients,” Mutation Research, vol. 595, no. 1-2, pp. 42–51, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. V. Máximo, P. Soares, J. Lima, J. Cameselle-Teijeiro, and M. Sobrinho-Simões, “Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: a study with emphasis on Hürthle cell tumors,” American Journal of Pathology, vol. 160, no. 5, pp. 1857–1865, 2002. View at Google Scholar · View at Scopus
  69. S. Datta, M. Majumder, N. K. Biswas, N. Sikdar, and B. Roy, “Increased risk of oral cancer in relation to common Indian mitochondrial polymorphisms and autosomal GSTP1 locus,” Cancer, vol. 110, no. 9, pp. 1991–1999, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. C. Ye, Y. T. Gao, W. Wen et al., “Association of mitochondrial DNA displacement loop (CA) dinucleotide repeat polymorphism with breast cancer risk and survival among Chinese women,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 8, pp. 2117–2122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Isidoro, E. Casado, A. Redondo et al., “Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis,” Carcinogenesis, vol. 26, no. 12, pp. 2095–2104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. P. Parrella, Y. Xiao, M. Fliss et al., “Detection of mitochondrial DNA mutations in primary breast cancer and fine-needle aspirates,” Cancer Research, vol. 61, no. 20, pp. 7623–7626, 2001. View at Google Scholar · View at Scopus
  73. F. Lopez-Rios, M. Sánchez-Aragó, E. García-Garcí et al., “Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas,” Cancer Research, vol. 67, no. 19, pp. 9013–9017, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. L. M. Tseng, P. H. Yin, C. W. Chi et al., “Mitochondrial DNA mutations and mitochondrial DNA depletion in breast cancer,” Genes Chromosomes and Cancer, vol. 45, no. 7, pp. 629–638, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. V. Ruppert, D. Nolte, T. Aschenbrenner, S. Pankuweit, R. Funck, and B. Maisch, “Novel point mutations in the mitochondrial DNA detected in patients with dilated cardiomyopathy by screening the whole mitochondrial genome,” Biochemical and Biophysical Research Communications, vol. 318, no. 2, pp. 535–543, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. C. W. Liou, T. K. Lin, F. M. Huang et al., “Association of the mitochondrial DNA 16189 T to C variant with lacunar cerebral infarction: evidence from a hospital-based case-control study,” Annals of the New York Academy of Sciences, vol. 1011, pp. 317–324, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. R. Zhang, F. Zhang, C. Wang, S. Wang, Y. -H. Shiao, and Z. Guo, “Identification of sequence polymorphism in the D-Loop region of mitochondrial DNA as a risk factor for hepatocellular carcinoma with distinct etiology,” Journal of Experimental and Clinical Cancer Research, vol. 29, no. 1, p. 130, 2010. View at Publisher · View at Google Scholar
  78. A. M. Ray, K. A. Zuhlke, A. M. Levin, J. A. Douglas, K. A. Cooney, and J. A. Petros, “Sequence variation in the mitochondrial gene cytochrome c oxidase subunit I and prostate cancer in African American men,” Prostate, vol. 69, no. 9, pp. 956–960, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. W. Kim, T. K. Yoo, D. J. Shin et al., “Mitochondrial DNA haplogroup analysis reveals no association between the common genetic lineages and prostate cancer in the Korean population,” PLoS ONE, vol. 3, no. 5, Article ID e2211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. M. S. Lehtonen, J. S. Moilanen, and K. Majamaa, “Increased variation in mtDNA in patients with familial sensorineural hearing impairment,” Human Genetics, vol. 113, no. 3, pp. 220–227, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. C. Herrnstadt and N. Howell, “An evolutionary perspective on pathogenic mtDNA mutations: haplogroup associations of clinical disorders,” Mitochondrion, vol. 4, no. 5-6, pp. 791–798, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. Y. Michikawa, F. Mazzucchelli, N. Bresolin, G. Scarlato, and G. Attardi, “Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication,” Science, vol. 286, no. 5440, pp. 774–779, 1999. View at Publisher · View at Google Scholar · View at Scopus
  83. K. J. Krishnan, L. C. Greaves, A. K. Reeve, and D. Turnbull, “The ageing mitochondrial genome,” Nucleic Acids Research, vol. 35, no. 22, pp. 7399–7405, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. W. H. Pavicic and S. M. Richard, “Correlation analysis between mtDNA 4977-bp deletion and ageing,” Mutation Research, vol. 670, no. 1-2, pp. 99–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. D. Harman, “Aging: a theory based on free radical and radiation chemistry,” Journal of gerontology, vol. 11, no. 3, pp. 298–300, 1956. View at Google Scholar · View at Scopus
  86. A. Trifunovic, A. Wredenberg, M. Falkenberg et al., “Premature ageing in mice expressing defective mitochondrial DNA polymerase,” Nature, vol. 429, no. 6990, pp. 417–423, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. C. C. Kujoth, A. Hiona, T. D. Pugh et al., “Medicine: mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging,” Science, vol. 309, no. 5733, pp. 481–484, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Trifunovic, A. Hansson, A. Wredenberg et al., “Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 50, pp. 17993–17998, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. D. Edgar and A. Trifunovic, “The mtDNA mutator mouse: dissecting mitochondrial involvement in aging,” Aging, vol. 1, no. 12, pp. 1028–1032, 2009. View at Google Scholar · View at Scopus
  90. A. Hiona, A. Sanz, G. C. Kujoth et al., “Mitochondrial DNA mutations induce mitochondrial dysfunction, apoptosis and sarcopenia in skeletal muscle of mitochondrial DNA mutator mice,” PLoS ONE, vol. 5, no. 7, Article ID e11468, 2010. View at Publisher · View at Google Scholar
  91. E. Dufour, M. Terzioglu, F. H. Sterky et al., “Age-associated mosaic respiratory chain deficiency causes trans-neuronal degeneration,” Human Molecular Genetics, vol. 17, no. 10, pp. 1418–1426, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. M. D. Brown, E. Starikovskaya, O. Derbeneva et al., “The role of mtDNA background in disease expression: a new primary LHON mutation associated with Western Eurasian haplogroup J,” Human Genetics, vol. 110, no. 2, pp. 130–138, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. G. Hudson, V. Carelli, L. Spruijt et al., “Clinical expression of leber hereditary optic neuropathy is affected by the mitochondrial DNA-haplogroup background,” American Journal of Human Genetics, vol. 81, no. 2, pp. 228–233, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. Y. Ji, A. M. Zhang, X. Jia et al., “Mitochondrial DNA haplogroups M7b1'2 and M8a affect clinical expression of leber hereditary optic neuropathy in Chinese families with the m.11778GA mutation,” American Journal of Human Genetics, vol. 83, no. 6, pp. 760–768, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Rosa, B. V. Fonseca, T. Krug et al., “Mitochondrial haplogroup H1 is protective for ischemic stroke in Portuguese patients,” BMC Medical Genetics, vol. 9, article 57, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. D. Ghezzi, C. Marelli, A. Achilli et al., “Mitochondrial DNA haplogroup K is associated with a lower risk of parkinson's disease in Italians,” European Journal of Human Genetics, vol. 13, no. 6, pp. 748–752, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. K. Gaweda-Walerych, A. Maruszak, K. Safranow et al., “Mitochondrial DNA haplogroups and subhaplogroups are associated with Parkinson's disease risk in a Polish PD cohort,” Journal of Neural Transmission, vol. 115, no. 11, pp. 1521–1526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. G. Carrieri, M. Bonafè, M. De Luca et al., “Mitochondrial DNA haplogroups and APOE4 allele are non-independent variables in sporadic Alzheimer's disease,” Human Genetics, vol. 108, no. 3, pp. 194–198, 2001. View at Publisher · View at Google Scholar · View at Scopus
  99. B. Rollins, M. V. Martin, P. A. Sequeira et al., “Mitochondrial variants in schizophrenia, bipolar disorder, and major depressive disorder,” PLoS ONE, vol. 4, no. 3, Article ID e4913, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. P. E. Coskun, E. Ruiz-Pesini, and D. C. Wallace, “Control region mtDNA variants: longevity, climatic adaptation, and a forensic conundrum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2174–2176, 2003. View at Publisher · View at Google Scholar · View at Scopus
  101. R. Saxena, P. I. W. De Bakker, K. Singer et al., “Comprehensive association testing of common mitochondrial DNA variation in metabolic disease,” American Journal of Human Genetics, vol. 79, no. 1, pp. 54–61, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. R. K. Bai, S. M. Leal, D. Covarrubias, A. Liu, and L. J. C. Wong, “Mitochondrial genetic background modifies breast cancer risk,” Cancer Research, vol. 67, no. 10, pp. 4687–4694, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. L. Shen, J. Wei, T. Chen et al., “Evaluating mitochondrial DNA in patients with breast cancer and benign breast disease,” Journal of Cancer Research and Clinical Oncology. In press. View at Publisher · View at Google Scholar
  104. H. Fang, L. Shen, T. Chen et al., “Cancer type-specific modulation of mitochondrial haplogroups in breast, colorectal and thyroid cancer,” BMC Cancer, vol. 10, article 421, 2010. View at Publisher · View at Google Scholar
  105. L. M. Booker, G. M. Habermacher, B. C. Jessie et al., “North American white mitochondrial haplogroups in prostate and renal cancer,” Journal of Urology, vol. 175, no. 2, pp. 468–472, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. E. E. Mueller, W. Eder, J. A. Mayr et al., “Mitochondrial haplogroups and control region polymorphisms are not associated with prostate cancer in Middle European caucasians,” PLoS ONE, vol. 4, no. 7, Article ID e6370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. X.-Y. Li, Y.-B. Guo, M. Su, L. Cheng, Z.-H. Lu, and D.-P. Tian, “Association of mitochondrial haplogroup D and risk of esophageal cancer in Taihang Mountain and Chaoshan areas in China,” Mitochondrion, vol. 11, no. 1, pp. 27–32, 2011. View at Publisher · View at Google Scholar
  108. M. S. Pepe, H. Janes, G. Longton, W. Leisenring, and P. Newcomb, “Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker,” American Journal of Epidemiology, vol. 159, no. 9, pp. 882–890, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. L. Xu, Y. Hu, B. Chen et al., “Mitochondrial polymorphisms as risk factors for endometrial cancer in southwest China,” International Journal of Gynecological Cancer, vol. 16, no. 4, pp. 1661–1667, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. H. J. Bandelt, A. Salas, and C. M. Bravi, “What is a ‘novel’; mtDNA mutation—and does ‘novelty’ really matter?” Journal of Human Genetics, vol. 51, no. 12, pp. 1073–1082, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. N. Raule, F. Sevini, A. Santoro, S. Altilia, and C. Franceschi, “Association studies on human mitochondrial DNA: methodological aspects and results in the most common age-related diseases,” Mitochondrion, vol. 7, no. 1-2, pp. 29–38, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. J. Yang, Y. Zhu, YI. Tong et al., “The novel G10680A mutation is associated with complete penetrance of the LHON/T14484C family,” Mitochondrion, vol. 9, no. 4, pp. 273–278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. G. De Benedictis, G. Rose, G. Carrieri et al., “Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans,” FASEB Journal, vol. 13, no. 12, pp. 1532–1536, 1999. View at Google Scholar · View at Scopus
  114. T. Amo, N. Yadava, R. Oh, D. G. Nicholls, and M. D. Brand, “Experimental assessment of bioenergetic differences caused by the common European mitochondrial DNA haplogroups H and T,” Gene, vol. 411, no. 1-2, pp. 69–76, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. W. A. Beckstead, M. T. W. Ebbert, M. J. Rowe, and D. A. McClellan, “Evolutionary pressure on mitochondrial cytochrome b is consistent with a role of CytbI7T affecting longevity during caloric restriction,” PLoS ONE, vol. 4, no. 6, Article ID e5836, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. S. Suissa, Z. Wang, J. Poole et al., “Ancient mtDNA genetic variants modulate mtDNA transcription and replication,” PLoS Genetics, vol. 5, no. 5, Article ID e1000474, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. J. R. Speakman, D. A. Talbot, C. Selman et al., “Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer,” Aging Cell, vol. 3, no. 3, pp. 87–95, 2004. View at Publisher · View at Google Scholar · View at Scopus
  118. D. C. Samuels, A. D. Carothers, R. Horton, and P. F. Chinnery, “The power to detect disease associations with mitochondrial DNA haplogroups,” American Journal of Human Genetics, vol. 78, no. 4, pp. 713–720, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. A. Gómez-Durán, D. Pacheu-Grau, E. López-Gallardo et al., “Unmasking the causes of multifactorial disorders: OXPHOS differences between mitochondrial haplogroups,” Human Molecular Genetics, vol. 19, no. 17, pp. 3343–3353, 2010. View at Publisher · View at Google Scholar
  120. D. Martínez-Redondo, A. Marcuello, J. A. Casajús et al., “Human mitochondrial haplogroup H: the highest VO consumer—is it a paradox?” Mitochondrion, vol. 10, no. 2, pp. 102–107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. M. J. Jackson, S. Papa, J. Bolaños et al., “Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function,” Molecular Aspects of Medicine, vol. 23, no. 1–3, pp. 209–285, 2002. View at Publisher · View at Google Scholar · View at Scopus
  122. R. H. Xu, H. Pelicano, Y. Zhou et al., “Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia,” Cancer Research, vol. 65, no. 2, pp. 613–621, 2005. View at Google Scholar · View at Scopus
  123. E. Hervouet, H. Simonnet, and C. Godinot, “Mitochondria and reactive oxygen species in renal cancer,” Biochimie, vol. 89, no. 9, pp. 1080–1088, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. I. R. Indran, M. P. Hande, and S. Pervaiz, “Tumor cell redox state and mitochondria at the center of the non-canonical activity of telomerase reverse transcriptase,” Molecular Aspects of Medicine, vol. 31, no. 1, pp. 21–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. S. J. Ralph, S. Rodríguez-Enríquez, J. Neuzil, E. Saavedra, and R. Moreno-Sánchez, “The causes of cancer revisited: “Mitochondrial malignancy” and ROS-induced oncogenic transformation—why mitochondria are targets for cancer therapy,” Molecular Aspects of Medicine, vol. 31, no. 2, pp. 145–170, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. J. Zielonka and B. Kalyanaraman, ““ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis”—a critical commentary,” Free Radical Biology and Medicine, vol. 45, no. 9, pp. 1217–1219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. W. Ladiges, J. Wanagat, B. Preston, L. Loeb, and P. Rabinovitch, “A mitochondrial view of aging, reactive oxygen species and metastatic cancer,” Aging cell, vol. 9, no. 4, pp. 462–465, 2010. View at Google Scholar
  128. N. G. Larsson, “Somatic mitochondrial DNA mutations in mammalian aging,” Annual Review of Biochemistry, vol. 79, pp. 683–706, 2010. View at Google Scholar · View at Scopus
  129. J. Lapointe and S. Hekimi, “Early mitochondrial dysfunction in long-lived Mclk1 mice,” The Journal of Biological Chemistry, vol. 283, no. 38, pp. 26217–26227, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. M. V. Blagosklonny, J. Campisi, D. A. Sinclair et al., “Impact papers on aging in 2009,” Aging, vol. 2, no. 3, pp. 111–121, 2010. View at Google Scholar
  131. A. Sanz, D. J. Fernández-Ayala, R. K. Stefanatos, and H. T. Jacobs, “Mitochondrial ROS production correlates with, but does not directly regulate lifespan in Drosophila,” Aging, vol. 2, no. 4, pp. 220–223, 2010. View at Google Scholar · View at Scopus
  132. S. E. Schriner, N. J. Linford, G. M. Martin et al., “Medecine: extension of murine life span by overexpression of catalase targeted to mitochondria,” Science, vol. 308, no. 5730, pp. 1909–1911, 2005. View at Publisher · View at Google Scholar · View at Scopus
  133. D. F. Dai, L. F. Santana, M. Vermulst et al., “Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging,” Circulation, vol. 119, no. 21, pp. 2789–2797, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. D. F. Dai, T. Chen, J. Wanagat et al., “Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria,” Aging cell, vol. 9, no. 4, pp. 536–544, 2010. View at Google Scholar
  135. S. J. Dubec, R. Aurora, and H. P. Zassenhaus, “Mitochondrial DNA mutations may contribute to aging via cell death caused by peptides that induce cytochrome c release,” Rejuvenation Research, vol. 11, no. 3, pp. 611–619, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. W. Yang and S. Hekimi, “Two modes of mitochondrial dysfunction lead independently to lifespan extension in Caenorhabditis elegans,” Aging Cell, vol. 9, no. 3, pp. 433–447, 2010. View at Publisher · View at Google Scholar
  137. D. C. Wallace, “Mitochondrial diseases in man and mouse,” Science, vol. 283, no. 5407, pp. 1482–1488, 1999. View at Publisher · View at Google Scholar · View at Scopus
  138. D. C. Wallace, “Mitochondria and cancer: warburg addressed,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 70, pp. 363–374, 2005. View at Publisher · View at Google Scholar · View at Scopus
  139. K. K. Singh and M. Kulawiec, “Mitochondrial DNA polymorphism and risk of cancer,” Methods in Molecular Biology, vol. 471, pp. 291–303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. K. Munakata, M. Tanaka, K. Mori et al., “Mitochondrial DNA 3644T→C mutation associated with bipolar disorder,” Genomics, vol. 84, no. 6, pp. 1041–1050, 2004. View at Publisher · View at Google Scholar · View at Scopus
  141. H. R. Elliott, D. C. Samuels, J. A. Eden, C. L. Relton, and P. F. Chinnery, “Pathogenic mitochondrial DNA mutations are common in the general population,” American Journal of Human Genetics, vol. 83, no. 2, pp. 254–260, 2008. View at Publisher · View at Google Scholar · View at Scopus