Table of Contents Author Guidelines Submit a Manuscript
Journal of Aging Research
Volume 2011, Article ID 286564, 10 pages
http://dx.doi.org/10.4061/2011/286564
Review Article

White Matter Changes in Bipolar Disorder, Alzheimer Disease, and Mild Cognitive Impairment: New Insights from DTI

1Division of Mental Health and Psychiatry, Department of General Psychiatry, University Hospitals of Geneva, Chemin du Petit-Bel-Air, Geneva, Switzerland
2Division of Old Age Psychiatry (PG), University of Lausanne School of Medicine, Lausanne, Switzerland
3Service Neuro-Diagnostique et Neuro-Interventionnel DISIM, University Hospitals of Geneva, Switzerland

Received 15 April 2011; Revised 10 August 2011; Accepted 5 September 2011

Academic Editor: Sofia Madureira

Copyright © 2011 Aikaterini Xekardaki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. M. Filley, “White matter and behavioral neurology,” Annals of the New York Academy of Sciences, vol. 1064, pp. 162–183, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. F. M. Benes, M. Turtle, Y. Khan, and P. Farol, “Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood,” Archives of General Psychiatry, vol. 51, no. 6, pp. 477–484, 1994. View at Google Scholar · View at Scopus
  3. J. N. Giedd, “Structural magnetic resonance imaging of the adolescent brain,” Annals of the New York Academy of Sciences, vol. 1021, pp. 77–85, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. G. Bartzokis, M. Beckson, P. H. Lu, K. H. Nuechterlein, N. Edwards, and J. Mintz, “Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study,” Archives of General Psychiatry, vol. 58, no. 5, pp. 461–465, 2001. View at Google Scholar · View at Scopus
  5. E. R. Sowell, B. S. Peterson, P. M. Thompson, S. E. Welcome, A. L. Henkenius, and A. W. Toga, “Mapping cortical change across the human life span,” Nature Neuroscience, vol. 6, no. 3, pp. 309–315, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. B. Pakkenberg and H. J. G. Gundersen, “Neocortical neuron number in humans: effect of sex and age,” Journal of Comparative Neurology, vol. 384, no. 2, pp. 312–320, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. S. L. Bengtsson, Z. Nagy, S. Skare, L. Forsman, H. Forssberg, and F. Ullén, “Extensive piano practicing has regionally specific effects on white matter development,” Nature Neuroscience, vol. 8, no. 9, pp. 1148–1150, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. S. Haller, A. Xekardaki, C. Delaloye et al., “Combined analysis of grey matter voxel-based morphometry and white matter tract-based spatial statistics in late-life bipolar disorder,” Journal of Psychiatry and Neuroscience, vol. 36, no. 1, p. 100140, 2011. View at Google Scholar
  9. P. J. Basser and D. K. Jones, “Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review,” NMR in Biomedicine, vol. 15, no. 7-8, pp. 456–467, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. P. J. Basser, J. Mattiello, and D. LeBihan, “MR diffusion tensor spectroscopy and imaging,” Biophysical Journal, vol. 66, no. 1, pp. 259–267, 1994. View at Google Scholar · View at Scopus
  11. D. Le Bihan, J. F. Mangin, C. Poupon et al., “Diffusion tensor imaging: concepts and applications,” Journal of Magnetic Resonance Imaging, vol. 13, no. 4, pp. 534–546, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. S. Chanraud, N. Zahr, E. V. Sullivan, and A. Pfefferbaum, “MR diffusion tensor imaging: a window into white matter integrity of the working brain,” Neuropsychology Review, vol. 20, no. 2, pp. 209–225, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. S. K. Song, S. W. Sun, M. J. Ramsbottom, C. Chang, J. Russell, and A. H. Cross, “Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water,” NeuroImage, vol. 17, no. 3, pp. 1429–1436, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. S. K. Song, S. W. Sun, W. K. Ju, S. J. Lin, A. H. Cross, and A. H. Neufeld, “Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia,” NeuroImage, vol. 20, no. 3, pp. 1714–1722, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. S. K. Song, J. Yoshino, T. Q. Le et al., “Demyelination increases radial diffusivity in corpus callosum of mouse brain,” NeuroImage, vol. 26, no. 1, pp. 132–140, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. G. Thomalla, V. Glauche, M. A. Koch, C. Beaulieu, C. Weiller, and J. Röther, “Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke,” NeuroImage, vol. 22, no. 4, pp. 1767–1774, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. C. Beaulieu, “The basis of anisotropic water diffusion in the nervous system—a technical review,” NMR in Biomedicine, vol. 15, no. 7-8, pp. 435–455, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. C. Beaulieu and P. S. Allen, “Determinants of anisotropic water diffusion in nerves,” Magnetic Resonance in Medicine, vol. 31, no. 4, pp. 394–400, 1994. View at Google Scholar · View at Scopus
  19. D. M. Wimberger, T. P. Roberts, A. J. Barkovich, L. M. Prayer, M. E. Moseley, and J. Kucharczyk, “Identification of “premyelination” by diffusion-weighted mri,” Journal of Computer Assisted Tomography, vol. 19, no. 1, pp. 28–33, 1995. View at Google Scholar · View at Scopus
  20. V. Gulani, A. G. Webb, I. D. Duncan, and P. C. Lauterbur, “Apparent diffusion tensor measurements in myelin-deficient rat spinal cords,” Magnetic Resonance in Medicine, vol. 45, no. 2, pp. 191–195, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. T. E. Conturo, N. F. Lori, T. S. Cull et al., “Tracking neuronal fiber pathways in the living human brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 18, pp. 10422–10427, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Mori, B. J. Crain, V. P. Chacko, and P. C. M. Van Zijl, “Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging,” Annals of Neurology, vol. 45, no. 2, pp. 265–269, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Taoka, S. Iwasaki, M. Sakamoto et al., “Diffusion anisotropy and diffusivity of white matter tracts within the temporal stem in Alzheimer disease: evaluation of the "tract of interest" by diffusion tensor tractography,” American Journal of Neuroradiology, vol. 27, no. 5, pp. 1040–1045, 2006. View at Google Scholar · View at Scopus
  24. D. S. Tuch, “Q-ball imaging,” Magnetic Resonance in Medicine, vol. 52, no. 6, pp. 1358–1372, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. V. J. Wedeen, P. Hagmann, W. Y. I. Tseng, T. G. Reese, and R. M. Weisskoff, “Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging,” Magnetic Resonance in Medicine, vol. 54, no. 6, pp. 1377–1386, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. T. E. J. Behrens, M. W. Woolrich, M. Jenkinson et al., “Characterization and Propagation of Uncertainty in Diffusion-Weighted MR Imaging,” Magnetic Resonance in Medicine, vol. 50, no. 5, pp. 1077–1088, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. S. M. Smith, M. Jenkinson, H. Johansen-Berg et al., “Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data,” NeuroImage, vol. 31, no. 4, pp. 1487–1505, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. C. M. Adler, M. P. DelBello, K. Jarvis, A. Levine, J. Adams, and S. M. Strakowski, “Voxel-based study of structural changes in first-episode patients with bipolar disorder,” Biological Psychiatry, vol. 61, no. 6, pp. 776–781, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. M. Sanches, M. S. Keshavan, P. Brambilla, and J. C. Soares, “Neurodevelopmental basis of bipolar disorder: a critical appraisal,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 32, no. 7, pp. 1617–1627, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. H. S. Mayberg, “Limbic-cortical dysregulation: a proposed model of depression,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 9, no. 3, pp. 471–481, 1997. View at Google Scholar · View at Scopus
  31. S. M. Strakowski, M. P. DelBello, and C. M. Adler, “The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings,” Molecular Psychiatry, vol. 10, no. 1, pp. 105–116, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. B. Baumann, P. Danos, D. Krell et al., “Reduced volume of limbic system-affiliated basal ganglia in mood disorders: preliminary data from a postmortem study,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 11, no. 1, pp. 71–78, 1999. View at Google Scholar · View at Scopus
  33. C. Bouras, E. Kövari, P. R. Hof, B. M. Riederer, and P. Giannakopoulos, “Anterior cingulate cortex pathology in schizophrenia and bipolar disorder,” Acta Neuropathologica, vol. 102, no. 4, pp. 373–379, 2001. View at Google Scholar · View at Scopus
  34. G. Rajkowska, A. Halaris, and L. D. Selemon, “Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder,” Biological Psychiatry, vol. 49, no. 9, pp. 741–752, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. R. M. Dupont, N. Butters, K. Schafer, T. Wilson, J. Hesselink, and J. C. Gillin, “Diagnostic specificity of focal white matter abnormalities in bipolar and unipolar mood disorder,” Biological Psychiatry, vol. 38, no. 7, pp. 482–486, 1995. View at Publisher · View at Google Scholar · View at Scopus
  36. W. M. McDonald, L. A. Tupler, F. A. Marsteller et al., “Hyperintense lesions on magnetic resonance images in bipolar disorder,” Biological Psychiatry, vol. 45, no. 8, pp. 965–971, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Silverstone, H. McPherson, Q. Li, and T. Doyle, “Deep white matter hyperintensities in patients with bipolar depression, unipolar depression and age-matched control subjects,” Bipolar Disorders, vol. 5, no. 1, pp. 53–57, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. A. L. Stoll, P. F. Renshaw, D. A. Yurgelun-Todd, and B. M. Cohen, “Neuroimaging in bipolar disorder: what have we learned?” Biological Psychiatry, vol. 48, no. 6, pp. 505–517, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. J. T. O'Brien, M. J. Firbank, M. S. Krishnan et al., “White matter hyperintensities rather than lacunar infarcts are associated with depressive symptoms in older people: the LADIS study,” American Journal of Geriatric Psychiatry, vol. 14, no. 10, pp. 834–841, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. B. T. Woods, D. Yurgelun-Todd, D. Mikulis, and S. S. Pillay, “Age-related MRI abnormalities in bipolar illness: a clinical study,” Biological Psychiatry, vol. 38, no. 12, pp. 846–847, 1995. View at Google Scholar · View at Scopus
  41. K. Lyoo, H. K. Lee, J. H. Jung, G. G. Noam, and P. F. Renshaw, “White matter hyperintensities on magnetic resonance imaging of the brain in children with psychiatric disorders,” Comprehensive Psychiatry, vol. 43, no. 5, pp. 361–368, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. K. H. Ahn, I. K. Lyoo, H. K. Lee et al., “White matter hyperintensities in subjects with bipolar disorder,” Psychiatry and Clinical Neurosciences, vol. 58, no. 5, pp. 516–521, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. M. J. Kempton, J. R. Geddes, U. Ettinger, S. C. R. Williams, and P. M. Grasby, “Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder,” Archives of General Psychiatry, vol. 65, no. 9, pp. 1017–1032, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. J. A. Frazier, J. L. Breeze, G. Papadimitriou et al., “White matter abnormalities in children with and at risk for bipolar disorder,” Bipolar Disorders, vol. 9, no. 8, pp. 799–809, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. V. Kafantaris, P. Kingsley, B. Ardekani et al., “Lower orbital frontal white matter integrity in adolescents with bipolar I disorder,” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 48, no. 1, pp. 79–86, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. C. M. Adler, J. Adams, M. P. DelBello et al., “Evidence of white matter pathology in bipolar disorder adolescents experiencing their first episode of mania: a diffusion tensor imaging study,” American Journal of Psychiatry, vol. 163, no. 2, pp. 322–324, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. S. Bruno, M. Cercignani, and M. A. Ron, “White matter abnormalities in bipolar disorder: a voxel-based diffusion tensor imaging study,” Bipolar Disorders, vol. 10, no. 4, pp. 460–468, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. J. L. Beyer, W. D. Taylor, J. R. MacFall et al., “Cortical white matter microstructural abnormalities in bipolar disorder,” Neuropsychopharmacology, vol. 30, no. 12, pp. 2225–2229, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. W. T. Regenold, C. A. D'Agostino, N. Ramesh, M. Hasnain, S. Roys, and R. P. Gullapalli, “Diffusion-weighted magnetic resonance imaging of white matter in bipolar disorder: a pilot study,” Bipolar Disorders, vol. 8, no. 2, pp. 188–195, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. A. Versace, J. R. C. Almeida, S. Hassel et al., “Elevated left and reduced right orbitomedial prefrontal fractional anisotropy in adults with bipolar disorder revealed by tract-based spatial statistics,” Archives of General Psychiatry, vol. 65, no. 9, pp. 1041–1052, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. M. M. Haznedar, F. Roversi, S. Pallanti et al., “Fronto-thalamo-striatal gray and white matter volumes and anisotropy of their connections in bipolar spectrum illnesses,” Biological Psychiatry, vol. 57, no. 7, pp. 733–742, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. J. E. Sussmann, G. K. S. Lymer, J. Mckirdy et al., “White matter abnormalities in bipolar disorder and schizophrenia detected using diffusion tensor magnetic resonance imaging,” Bipolar Disorders, vol. 11, no. 1, pp. 11–18, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. K. Mahon, J. Wu, A. K. Malhotra et al., “A voxel-based diffusion tensor imaging study of white matter in bipolar disorder,” Neuropsychopharmacology, vol. 34, no. 6, pp. 1590–1600, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. S. M. Strakowski, M. P. Delbello, C. Adler, K. M. Cecil, and K. W. Sax, “Neuroimaging in bipolar disorder,” Bipolar Disorders, vol. 2, no. 3, pp. 148–164, 2000. View at Google Scholar · View at Scopus
  55. C. Chaddock, G. J. Barker, N. Marshall et al., “White matter microstructural impairments and genetic liability to familial bipolar I disorder,” British Journal of Psychiatry, vol. 194, no. 6, pp. 527–534, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. M. V. Zanetti, M. P. Jackowski, A. Versace et al., “State-dependent microstructural white matter changes in bipolar I depression,” European Archives of Psychiatry and Clinical Neuroscience, vol. 259, no. 6, pp. 316–328, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. D. A. Yurgelun-todd, M. M. Silveri, S. A. Gruber, M. L. Rohan, and P. J. Pimentel, “White matter abnormalities observed in bipolar disorder: a diffusion tensor imaging study,” Bipolar Disorders, vol. 9, no. 5, pp. 504–512, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. D. S. Knopman, B. F. Boeve, and R. C. Petersen, “Essentials of the proper diagnoses of mild cognitive impairment, dementia, and major subtypes of dementia,” Mayo Clinic Proceedings, vol. 78, no. 10, pp. 1290–1308, 2003. View at Google Scholar · View at Scopus
  59. R. C. Petersen, “Mild cognitive impairment as a diagnostic entity,” Journal of Internal Medicine, vol. 256, no. 3, pp. 183–194, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. W. R. Markesbery, F. A. Schmitt, R. J. Kryscio, D. G. Davis, C. D. Smith, and D. R. Wekstein, “Neuropathologic substrate of mild cognitive impairment,” Archives of Neurology, vol. 63, no. 1, pp. 38–46, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. C. Flicker, S. H. Ferris, and B. Reisberg, “A longitudinal study of cognitive function in elderly persons with subjective memory complaints,” Journal of the American Geriatrics Society, vol. 41, no. 10, pp. 1029–1032, 1993. View at Google Scholar · View at Scopus
  62. R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen, “Mild cognitive impairment: clinical characterization and outcome,” Archives of Neurology, vol. 56, no. 3, pp. 303–308, 1999. View at Google Scholar · View at Scopus
  63. D. A. Bennett, J. A. Schneider, Z. Arvanitakis et al., “Neuropathology of older persons without cognitive impairment from two community-based studies,” Neurology, vol. 66, no. 12, pp. 1837–1844, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. D. G. Davis, F. A. Schmitt, D. R. Wekstein, and W. R. Markesbery, “Alzheimer neuropathologic alterations in aged cognitively normal subjects,” Journal of Neuropathology and Experimental Neurology, vol. 58, no. 4, pp. 376–388, 1999. View at Google Scholar · View at Scopus
  65. D. S. Knopman, J. E. Parisi, A. Salviati et al., “Neuropathology of cognitively normal elderly,” Journal of Neuropathology and Experimental Neurology, vol. 62, no. 11, pp. 1087–1095, 2003. View at Google Scholar · View at Scopus
  66. P. T. Nelson, G. A. Jicha, F. A. Schmitt et al., “Clinicopathologic correlations in a large Alzheimer disease center autopsy cohort: neuritic plaques and neurofibrillary tangles "do count" when staging disease severity,” Journal of Neuropathology and Experimental Neurology, vol. 66, no. 12, pp. 1136–1146, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. J. L. Price and J. C. Morris, “Tangles and plaques in nondemented aging and 'preclinical' alzheimer's disease,” Annals of Neurology, vol. 45, no. 3, pp. 358–368, 1999. View at Publisher · View at Google Scholar · View at Scopus
  68. F. A. Schmitt, D. G. Davis, D. R. Wekstein, C. D. Smith, J. W. Ashford, and W. R. Markesbery, ““Preclinical” AD revisited: neuropathology of cognitively normal older adults,” Neurology, vol. 55, no. 3, pp. 370–376, 2000. View at Google Scholar · View at Scopus
  69. B. E. Tomlinson, G. Blessed, and M. Roth, “Observations on the brains of non-demented old people,” Journal of the Neurological Sciences, vol. 7, no. 2, pp. 331–356, 1968. View at Google Scholar · View at Scopus
  70. C. R. Jack Jr., R. C. Petersen, Y. C. Xu et al., “Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment,” Neurology, vol. 52, no. 7, pp. 1397–1403, 1999. View at Google Scholar · View at Scopus
  71. A. Brun and E. Englund, “A white matter disorder in dementia of the Alzheimer type: a pathoanatomical study,” Annals of Neurology, vol. 19, no. 3, pp. 253–262, 1986. View at Google Scholar · View at Scopus
  72. M. Sjöbeck and E. Englund, “Glial levels determine severity of white matter disease in Alzheimer's disease: a neuropathological study of glial changes,” Neuropathology and Applied Neurobiology, vol. 29, no. 2, pp. 159–169, 2003. View at Publisher · View at Google Scholar
  73. M. Sjöbeck, M. Haglund, and E. Englund, “Decreasing myelin density reflected increasing white matter pathology in azheimer's disease—a neuropathological study,” International Journal of Geriatric Psychiatry, vol. 20, no. 10, pp. 919–926, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. G. Bartzokis, J. L. Cummings, D. Sultzer, V. W. Henderson, K. H. Nuechterlein, and J. Mintz, “White matter structural integrity in healthy aging adults and patients with Alzheimer disease: a magnetic resonance imaging study,” Archives of Neurology, vol. 60, no. 3, pp. 393–398, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Coleman, “Axon degeneration mechanisms: commonality amid diversity,” Nature Reviews Neuroscience, vol. 6, no. 11, pp. 889–898, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. B. Reisberg, E. H. Franssen, S. M. Hasan et al., “Retrogenesis: clinical, physiologic, and pathologic mechanisms in brain aging, Alzheimer's and other dementing processes,” European Archives of Psychiatry and Clinical Neuroscience, vol. 249, no. 3, pp. III28–III36, 1999. View at Google Scholar · View at Scopus
  77. J. C. De La Torre, “The vascular hypothesis of Alzheimer's disease: bench to bedside and beyond,” Neurodegenerative Diseases, vol. 7, no. 1–823, pp. 116–121, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. L. Bracco, C. Piccini, M. Moretti et al., “Alzheimer's disease: role of size and location of white matter changes in determining cognitive deficits,” Dementia and Geriatric Cognitive Disorders, vol. 20, no. 6, pp. 358–366, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. E. Garde, E. L. Mortensen, K. Krabbe, E. Rostrup, and H. B. W. Larsson, “Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: a longitudinal study,” The Lancet, vol. 356, no. 9230, pp. 628–634, 2000. View at Google Scholar · View at Scopus
  80. G. Gold, E. Kövari, F. R. Herrmann et al., “Cognitive consequences of thalamic, basal ganglia, and deep white matter lacunes in brain aging and dementia,” Stroke, vol. 36, no. 6, pp. 1184–1188, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. E. V. Sullivan and A. Pfefferbaum, “Diffusion tensor imaging and aging,” Neuroscience and Biobehavioral Reviews, vol. 30, no. 6, pp. 749–761, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. M. Bozzali, A. Falini, M. Franceschi et al., “White matter damage in Alzheimer's disease assessed in vivo using diffusion tensor magnetic resonance imaging,” Journal of Neurology Neurosurgery and Psychiatry, vol. 72, no. 6, pp. 742–746, 2002. View at Publisher · View at Google Scholar · View at Scopus
  83. D. H. Salat, D. S. Tuch, A. J. W. van der Kouwe et al., “White matter pathology isolates the hippocampal formation in Alzheimer's disease,” Neurobiology of Aging, vol. 31, no. 2, pp. 244–256, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. A. Fellgiebel, P. Wille, M. J. Müller et al., “Ultrastructural hippocampal and white matter alterations in mild cognitive impairment: a diffusion tensor imaging study,” Dementia and Geriatric Cognitive Disorders, vol. 18, no. 1, pp. 101–108, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. D. Head, “Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging,” Cerebral Cortex, vol. 14, no. 4, pp. 410–423, 2004. View at Publisher · View at Google Scholar
  86. D. Head, A. Z. Snyder, L. E. Girton, J. C. Morris, and R. L. Buckner, “Frontal-hippocampal double dissociation between normal aging and Alzheimer's disease,” Cerebral Cortex, vol. 15, no. 6, pp. 732–739, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. R. Stahl, O. Dietrich, S. J. Teipel, H. Hampel, M. F. Reiser, and S. O. Schoenberg, “White matter damage in Alzheimer disease and mild cognitive impairment: assessment with diffusion-tensor MR imaging and parallel imaging techniques,” Radiology, vol. 243, no. 2, pp. 483–492, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. I. L. H. Choo, D. Y. Lee, J. S. Oh et al., “Posterior cingulate cortex atrophy and regional cingulum disruption in mild cognitive impairment and Alzheimer's disease,” Neurobiology of Aging, vol. 31, no. 5, pp. 772–779, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. S. E. Rose, K. L. McMahon, A. L. Janke et al., “Diffusion indices on magnetic resonance imaging and neuropsychological performance in amnestic mild cognitive impairment,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 77, no. 10, pp. 1122–1128, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. D. Medina, L. deToledo-Morrell, F. Urresta et al., “White matter changes in mild cognitive impairment and AD: a diffusion tensor imaging study,” Neurobiology of Aging, vol. 27, no. 5, pp. 663–672, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. Y. Zhang, N. Schuff, G. H. Jahng et al., “Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease,” Neurology, vol. 68, no. 1, pp. 13–19, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. J. Huang, R. P. Friedland, and A. P. Auchus, “Diffusion tensor imaging of normal-appearing white matter in mild cognitive impairment and early Alzheimer disease: preliminary evidence of axonal degeneration in the temporal lobe,” American Journal of Neuroradiology, vol. 28, no. 10, pp. 1943–1948, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. M. Taketomi, N. Kinoshita, K. Kimura et al., “Selective reduction of diffusion anisotropy in white matter of Alzheimer disease brains measured by 3.0 Tesla magnetic resonance imaging,” Neuroscience Letters, vol. 332, no. 1, pp. 45–48, 2002. View at Publisher · View at Google Scholar
  94. M. D. Greicius, K. Supekar, V. Menon, and R. F. Dougherty, “Resting-state functional connectivity reflects structural connectivity in the default mode network,” Cerebral Cortex, vol. 19, no. 1, pp. 72–78, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. P. Scheltens, F. Barkhof, D. Leys, E. C. Wolters, R. Ravid, and W. Kamphorst, “Histopathologic correlates of white matter changes on MRI in Alzheimer's disease and normal aging,” Neurology, vol. 45, no. 5, pp. 883–888, 1995. View at Google Scholar · View at Scopus
  96. S. W. Sun, S. K. Song, M. P. Harms et al., “Detection of age-dependent brain injury in a mouse model of brain amyloidosis associated with Alzheimer's disease using magnetic resonance diffusion tensor imaging,” Experimental Neurology, vol. 191, no. 1, pp. 77–85, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. F. Agosta, M. Pievani, S. Sala et al., “White matter damage in Alzheimer disease and its relationship to gray matter atrophy,” Radiology, vol. 258, no. 3, pp. 853–863, 2011. View at Publisher · View at Google Scholar · View at PubMed
  98. B. Reisberg, E. H. Franssen, L. E. M. Souren, S. R. Auer, I. Akram, and S. Kenowsky, “Evidence and mechanisms of retrogenesis in Alzheimer's and other dementias: management and treatment import,” American Journal of Alzheimer's Disease and other Dementias, vol. 17, no. 4, pp. 202–212, 2002. View at Google Scholar · View at Scopus
  99. O. Naggara, C. Oppenheim, D. Rieu et al., “Diffusion tensor imaging in early Alzheimer's disease,” Psychiatry Research, vol. 146, no. 3, pp. 243–249, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. A. Fellgiebel, I. Schermuly, A. Gerhard et al., “Functional relevant loss of long association fibre tracts integrity in early Alzheimer's disease,” Neuropsychologia, vol. 46, no. 6, pp. 1698–1706, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. N. H. Stricker, B. C. Schweinsburg, L. Delano-Wood et al., “Decreased white matter integrity in late-myelinating fiber pathways in Alzheimer's disease supports retrogenesis,” NeuroImage, vol. 45, no. 1, pp. 10–16, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. S. J. Teipel, A. L. W. Bokde, C. Born et al., “Morphological substrate of face matching in healthy ageing and mild cognitive impairment: a combined MRI-fMRI study,” Brain, vol. 130, no. 7, pp. 1745–1758, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. D. Y. Lee, E. Fletcher, O. Martinez et al., “Regional pattern of white matter microstructural changes in normal aging, MCI, and AD,” Neurology, vol. 73, no. 21, pp. 1722–1728, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. B. Bodini, Z. Khaleeli, M. Cercignani, D. H. Miller, A. J. Thompson, and O. Ciccarelli, “Exploring the relationship between white matter and gray matter damage in early primary progressive multiple sclerosis: an in vivo study with TBSS and VBM,” Human Brain Mapping, vol. 30, no. 9, pp. 2852–2861, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. C. Pierpaoli, A. Barnett, S. Pajevic et al., “Water diffusion changes in wallerian degeneration and their dependence on white matter architecture,” NeuroImage, vol. 13, no. 6, pp. 1174–1185, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. S. W. Sun, H. F. Liang, T. Q. Le, R. C. Armstrong, A. H. Cross, and S. K. Song, “Differential sensitivity of in vivo and ex vivo diffusion tensor imaging to evolving optic nerve injury in mice with retinal ischemia,” NeuroImage, vol. 32, no. 3, pp. 1195–1204, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. S. W. Sun, H. F. Liang, M. Xie, U. Oyoyo, and A. Lee, “Fixation, not death, reduces sensitivity of DTI in detecting optic nerve damage,” NeuroImage, vol. 44, no. 3, pp. 611–619, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  108. K. Schmierer, C. A. M. Wheeler-Kingshott, P. A. Boulby et al., “Diffusion tensor imaging of post mortem multiple sclerosis brain,” NeuroImage, vol. 35, no. 2, pp. 467–477, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  109. E. C. Klawiter, R. E. Schmidt, K. Trinkaus et al., “Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords,” NeuroImage, vol. 55, no. 4, pp. 1454–1460, 2011. View at Publisher · View at Google Scholar · View at PubMed
  110. S. Haller, D. Nguyen, C. Rodriguez et al., “Individual prediction of cognitive decline in mild cognitive impairment using support vector machine-based analysis of diffusion tensor imaging data,” Journal of Alzheimer's Disease, vol. 22, no. 1, pp. 315–327, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  111. W. S. Noble, “What is a support vector machine?” Nature Biotechnology, vol. 24, no. 12, pp. 1565–1567, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus