Table of Contents Author Guidelines Submit a Manuscript
Journal of Aging Research
Volume 2011, Article ID 374653, 6 pages
http://dx.doi.org/10.4061/2011/374653
Review Article

Treatment and Prevention of Osteoarthritis through Exercise and Sports

1Orthopaedic Department, University of Basel, Spitalstr. 21, 4031 Basel, Switzerland
2Osteoarthritis Research Group, University of Basel, 4003 Basel, Switzerland

Received 18 September 2010; Accepted 1 November 2010

Academic Editor: Iris Reuter

Copyright © 2011 Victor Valderrabano and Christina Steiger. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. T. Felson, A. Naimark, J. Anderson, L. Kazis, W. Castelli, and R. F. Meenan, “The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study,” Arthritis and Rheumatism, vol. 30, no. 8, pp. 914–918, 1987. View at Google Scholar · View at Scopus
  2. A. A. M. C. Claessens, J. S. A. G. Schouten, F. A. van den Ouweland, and H. A. Valkenburg, “Do clinical findings associate with radiographic osteoarthritis of the knee?” Annals of the Rheumatic Diseases, vol. 49, no. 10, pp. 771–774, 1990. View at Google Scholar · View at Scopus
  3. V. Valderrabano, B. M. Nigg, V. von Tscharner, D. J. Stefanyshyn, B. Goepfert, and B. Hintermann, “Gait analysis in ankle osteoarthritis and total ankle replacement,” Clinical Biomechanics, vol. 22, no. 8, pp. 894–904, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. V. Valderrabano, V. von Tscharner, B. M. Nigg et al., “Lower leg muscle atrophy in ankle osteoarthritis,” Journal of Orthopaedic Research, vol. 24, no. 12, pp. 2159–2169, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. S. Ikeda, H. Tsumura, and T. Torisu, “Age-related quadriceps-dominant muscle atrophy and incident radiographic knee osteoarthritis,” Journal of Orthopaedic Science, vol. 10, no. 2, pp. 121–126, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. C. Slemenda, K. D. Brandt, D. K. Heilman et al., “Quadriceps weakness and osteoarthritis of the knee,” Annals of Internal Medicine, vol. 127, no. 2, pp. 97–104, 1997. View at Google Scholar · View at Scopus
  7. C. Slemenda, D. K. Heilman, K. D. Brandt et al., “Reduced quadriceps strength relative to body weight: a risk factor for knee osteoarthritis in women?” Arthritis and Rheumatism, vol. 41, no. 11, pp. 1951–1959, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Amaro, F. Amado, J. A. Duarte, and H. J. Appell, “Gluteus medius muscle atrophy is related to contralateral and ipsilateral hip joint osteoarthritis,” International Journal of Sports Medicine, vol. 28, no. 12, pp. 1035–1039, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. A. Grimaldi, C. Richardson, G. Durbridge, W. Donnelly, R. Darnell, and J. Hides, “The association between degenerative hip joint pathology and size of the gluteus maximus and tensor fascia lata muscles,” Manual Therapy, vol. 14, no. 6, pp. 611–617, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. A. Grimaldi, C. Richardson, W. Stanton, G. Durbridge, W. Donnelly, and J. Hides, “The association between degenerative hip joint pathology and size of the gluteus medius, gluteus minimus and piriformis muscles,” Manual Therapy, vol. 14, no. 6, pp. 605–610, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. O. D. Schipplein and T. P. Andriacchi, “Interaction between active and passive knee stabilizers during level walking,” Journal of Orthopaedic Research, vol. 9, no. 1, pp. 113–119, 1991. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. K. D. Brandt, “Putting some muscle into osteoarthritis,” Annals of Internal Medicine, vol. 127, no. 2, pp. 154–156, 1997. View at Google Scholar · View at Scopus
  13. T. Hortobágyi, J. Garry, D. Holbert, and P. Devita, “Aberrations in the control of quadriceps muscle force in patients with knee osteoarthritis,” Arthritis Care and Research, vol. 51, no. 4, pp. 562–569, 2004. View at Google Scholar · View at Scopus
  14. T. Hortobágyi, L. Westerkamp, S. Beam et al., “Altered hamstring-quadriceps muscle balance in patients with knee osteoarthritis,” Clinical Biomechanics, vol. 20, no. 1, pp. 97–104, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. M. D. Lewek, K. S. Rudolph, and L. Snyder-Mackler, “Quadriceps femoris muscle weakness and activation failure in patients with symptomatic knee osteoarthritis,” Journal of Orthopaedic Research, vol. 22, no. 1, pp. 110–115, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. A. E. Mikesky, A. Meyer, and K. L. Thompson, “Relationship between quadriceps strength and rate of loading during gait in women,” Journal of Orthopaedic Research, vol. 18, no. 2, pp. 171–175, 2000. View at Google Scholar · View at Scopus
  17. S. C. O'Reilly, A. Jones, K. R. Muir, and M. Doherty, “Quadriceps weakness in knee osteoarthritis: the effect on pain and disability,” Annals of the Rheumatic Diseases, vol. 57, no. 10, pp. 588–594, 1998. View at Google Scholar · View at Scopus
  18. W. Herzog and D. Longino, “The role of muscles in joint degeneration and osteoarthritis,” Journal of Biomechanics, vol. 40, supplement 1, pp. S54–S63, 2007. View at Publisher · View at Google Scholar · View at PubMed
  19. B. Fink, M. Egl, J. Singer, M. Fuerst, M. Bubenheim, and E. Neuen-Jacob, “Morphologic changes in the vastus medialis muscle in patients with osteoarthritis of the knee,” Arthritis and Rheumatism, vol. 56, no. 11, pp. 3626–3633, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. T. Nakamura and K. Suzuki, “Muscular changes in osteoarthritis of the hip and knee,” Journal of the Japanese Orthopaedic Association, vol. 66, no. 5, pp. 467–475, 1992. View at Google Scholar
  21. D. L. Costill, W. J. Fink, and M. L. Pollock, “Muscle fiber composition and enzyme activities of elite distance runners,” Medicine and Science in Sports and Exercise, vol. 8, no. 2, pp. 96–100, 1976. View at Google Scholar · View at Scopus
  22. W. J. Fink, D. L. Costill, and M. L. Pollock, “Submaximal and maximal working capacity of elite distance runners. II. Muscle fiber composition and enzyme activities,” Annals of the New York Academy of Sciences, vol. 301, pp. 323–327, 1977. View at Google Scholar · View at Scopus
  23. J. M. Lüthi, C. Gerber, H. Claassen, and H. Hoppeler, “The injured and the immobilized muscle cell: ultrastructural observations,” Sportverletzung Sportschaden, vol. 3, no. 2, pp. 58–61, 1989. View at Google Scholar · View at Scopus
  24. B. Saltin, J. Henriksson, E. Nygaard, P. Andersen, and E. Jansson, “Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners,” Annals of the New York Academy of Sciences, vol. 301, pp. 3–29, 1977. View at Google Scholar · View at Scopus
  25. A. J. Cruz-Jentoft, J. P. Baeyens, J. M. Bauer et al., “Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People,” Age and Ageing, vol. 39, no. 4, pp. 412–423, 2010. View at Publisher · View at Google Scholar · View at PubMed
  26. B. H. Goodpaster, S. W. Park, T. B. Harris et al., “The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study,” Journals of Gerontology A, vol. 61, no. 10, pp. 1059–1064, 2006. View at Google Scholar · View at Scopus
  27. I. Janssen, R. N. Baumgartner, R. Ross, I. H. Rosenberg, and R. Roubenoff, “Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women,” American Journal of Epidemiology, vol. 159, no. 4, pp. 413–421, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. T. E. Jones, K. W. Stephenson, J. G. King, K. R. Knight, T. L. Marshall, and W. B. Scott, “Sarcopenia–mechanisms and treatments,” Journal of Geriatric Physical Therapy, vol. 32, no. 2, pp. 39–45, 2009. View at Google Scholar · View at Scopus
  29. L. Cadmus, M. B. Patrick, M. L. MacIejewski, T. Topolski, B. Belza, and D. L. Patrick, “Community-based aquatic exercise and quality of life in persons with osteoarthritis,” Medicine and Science in Sports and Exercise, vol. 42, no. 1, pp. 8–15, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. M. H. Jan, C. H. Lin, Y. F. Lin, J. J. Lin, and D. H. Lin, “Effects of weight-bearing versus nonweight-bearing exercise on function, walking speed, and position sense in participants with knee osteoarthritis: a randomized controlled trial,” Archives of Physical Medicine and Rehabilitation, vol. 90, no. 6, pp. 897–904, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. M. H. Jan, J. J. Lin, J. J. Liau, Y. F. Lin, and D. H. Lin, “Investigation of clinical effects of high- and low-resistance training for patients with knee osteoarthritis: a randomized controlled trial,” Physical Therapy, vol. 88, no. 4, pp. 427–436, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. H. Lund, U. Weile, R. Christensen et al., “A randomized controlled trial of aquatic and land-based exercise in patients with knee osteoarthritis,” Journal of Rehabilitation Medicine, vol. 40, no. 2, pp. 137–144, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. A. E. Mikesky, S. A. Mazzuca, K. D. Brandt, S. M. Perkins, T. Damush, and K. A. Lane, “Effects of strength training on the incidence and progression of knee osteoarthritis,” Arthritis Care and Research, vol. 55, no. 5, pp. 690–699, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. B. W. J. H. Penninx, S. P. Messier, W. J. Rejeski et al., “Physical exercise and the prevention of disability in activities of daily living in older persons with osteoarthritis,” Archives of Internal Medicine, vol. 161, no. 19, pp. 2309–2316, 2001. View at Google Scholar · View at Scopus
  35. C. Wang, C. H. Schmid, P. L. Hibberd et al., “Tai Chi is effective in treating knee osteoarthritis: a randomized controlled trial,” Arthritis Care and Research, vol. 61, no. 11, pp. 1545–1553, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. E. M. Bartels, H. Lund, K. B. Hagen, H. Dagfinrud, R. Christensen, and B. Danneskiold-Samsøe, “Aquatic exercise for the treatment of knee and hip osteoarthritis,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD005523, 2007. View at Google Scholar
  37. L. Brosseau, L. MacLeay, V. Robinson, G. Wells, and P. Tugwell, “Intensity of exercise for the treatment of osteoarthritis,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD004259, 2003. View at Google Scholar
  38. M. Fransen and S. McConnell, “Exercise for osteoarthritis of the knee,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD004376, 2008. View at Google Scholar
  39. M. Fransen, S. McConnell, and M. Bell, “Exercise for osteoarthritis of the hip or knee,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD004286, 2003. View at Google Scholar
  40. M. Fransen, S. McConnell, and M. Bell, “Therapeutic exercise for people with osteoarthritis of the hip or knee. A systematic review,” Journal of Rheumatology, vol. 29, no. 8, pp. 1737–1745, 2002. View at Google Scholar · View at Scopus
  41. L. E. Hart, D. A. Haaland, D. A. Baribeau, I. M. Mukovozov, and T. F. Sabljic, “The relationship between exercise and osteoarthritis in the elderly,” Clinical Journal of Sport Medicine, vol. 18, no. 6, pp. 508–521, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. E. Roddy, W. Zhang, and M. Doherty, “Aerobic walking or strengthening exercise for osteoarthritis of the knee? A systematic review,” Annals of the Rheumatic Diseases, vol. 64, no. 4, pp. 544–548, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. W. Zhang, R. W. Moskowitz, G. Nuki et al., “OARSI recommendations for the management of hip and knee osteoarthritis, part II: OARSI evidence-based, expert consensus guidelines,” Osteoarthritis and Cartilage, vol. 16, no. 2, pp. 137–162, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. R. R. Pate, M. Pratt, S. N. Blair et al., “Physical activity and public health: a recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine,” Journal of the American Medical Association, vol. 273, no. 5, pp. 402–407, 1995. View at Google Scholar · View at Scopus
  45. D. J. Hart, D. V. Doyle, and T. D. Spector, “Incidence and risk factors for radiographic knee osteoarthritis in middle-aged women: the Chingford study,” Arthritis and Rheumatism, vol. 42, no. 1, pp. 17–24, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. J. H. Kellgren, J. S. Lawrence, and F. Bier, “Genetic factors in generalized osteo-arthrosis,” Annals of the Rheumatic Diseases, vol. 22, pp. 237–255, 1963. View at Google Scholar · View at Scopus
  47. P. D. Saville and J. Dickson, “Age and weight in osteoarthritis of the hip,” Arthritis and Rheumatism, vol. 11, no. 5, pp. 635–644, 1968. View at Google Scholar · View at Scopus
  48. S. Amin, K. Baker, J. Niu et al., “Quadriceps strength and the risk of cartilage loss and symptom progression in knee osteoarthritis,” Arthritis and Rheumatism, vol. 60, no. 1, pp. 189–198, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. I. G. Otterness, J. D. Eskra, M. L. Bliven, A. K. Shay, J. P. Pelletier, and A. J. Milici, “Exercise protects against articular cartilage degeneration in the hamster,” Arthritis and Rheumatism, vol. 41, no. 11, pp. 2068–2076, 1998. View at Publisher · View at Google Scholar · View at Scopus
  50. E. M. Roos and L. Dahlberg, “Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized, controlled trial in patients at risk of osteoarthritis,” Arthritis and Rheumatism, vol. 52, no. 11, pp. 3507–3514, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. I. C. Helmark, U. R. Mikkelsen, J. Borglum et al., “Exercise increases interleukin-10 levels both intraarticularly and peri-synovially in patients with knee osteoarthritis: a randomized controlled trial,” Arthritis Research & Therapy, vol. 12, article R126, 2010. View at Publisher · View at Google Scholar · View at PubMed
  52. P. H. Hart, M. J. Ahern, M. D. Smith, and J. J. Finlay-Jones, “Comparison of the suppressive effects of interleukin-10 and interleukin-4 on synovial fluid macrophages and blood monocytes from patients with inflammatory arthritis,” Immunology, vol. 84, no. 4, pp. 536–542, 1995. View at Google Scholar · View at Scopus
  53. G. Schulze-Tanzil, H. Zreiqat, R. Sabat et al., “Interleukin-10 and articular cartilage: experimental therapeutical approaches in cartilage disorders,” Current Gene Therapy, vol. 9, no. 4, pp. 306–315, 2009. View at Publisher · View at Google Scholar · View at Scopus