Table of Contents Author Guidelines Submit a Manuscript
Journal of Aging Research
Volume 2011 (2011), Article ID 963172, 15 pages
http://dx.doi.org/10.4061/2011/963172
Review Article

Regulation of Senescence in Cancer and Aging

Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, S7-125, Worcester, MA 01655, USA

Received 15 December 2010; Accepted 12 January 2011

Academic Editor: Amancio Carnero

Copyright © 2011 Yahui Kong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Hayflick and P. S. Moorhead, “The serial cultivation of human diploid cell strains,” Experimental Cell Research, vol. 25, no. 3, pp. 585–621, 1961. View at Google Scholar · View at Scopus
  2. P. J. Vojta and J. C. Barrett, “Genetic analysis of cellular senescence,” Biochimica et Biophysica Acta, vol. 1242, no. 1, pp. 29–41, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. S. W. Sherwood, D. Rush, J. L. Ellsworth, and R. T. Schimke, “Defining cellular senescence in IMR-90 cells: a flow cytometric analysis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 23, pp. 9086–9090, 1988. View at Google Scholar · View at Scopus
  4. V. J. Cristofalo, P. D. Phillips, T. Sorger, and G. Gerhard, “Alterations in the responsiveness of senescent cells to growth factors,” Journals of Gerontology, vol. 44, no. 6, pp. 55–62, 1989. View at Google Scholar · View at Scopus
  5. T. Matsumura, Z. Zerrudo, and L. Hayflick, “Senescent human diploid cells in culture: survival, DNA synthesis and morphology,” Journals of Gerontology, vol. 34, no. 3, pp. 328–334, 1979. View at Google Scholar · View at Scopus
  6. E. Wang, “Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved,” Cancer Research, vol. 55, no. 11, pp. 2284–2292, 1995. View at Google Scholar · View at Scopus
  7. B. Hampel, M. Wagner, D. Teis, W. Zwerschke, L. A. Huber, and P. Jansen-Dürr, “Apoptosis resistance of senescent human fibroblasts is correlated with the absence of nuclear IGFBP-3,” Aging Cell, vol. 4, no. 6, pp. 325–330, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Goldstein, “Replicative senescence: the human fibroblast comes of age,” Science, vol. 249, no. 4973, pp. 1129–1133, 1990. View at Google Scholar · View at Scopus
  9. G. P. Dimri, X. Lee, G. Basile et al., “A biomarker that identifies senescent human cells in culture and in aging skin in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 20, pp. 9363–9367, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. V. J. Cristofalo, C. Volker, M. K. Francis, and M. Tresini, “Age-dependent modifications of gene expression in human fibroblasts,” Critical Reviews in Eukaryotic Gene Expression, vol. 8, no. 1, pp. 43–80, 1998. View at Google Scholar · View at Scopus
  11. D. N. Shelton, E. Chang, P. S. Whittier, D. Choi, and W. D. Funk, “Microarray analysis of replicative senescence,” Current Biology, vol. 9, no. 17, pp. 939–945, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. S. R. Schwarze, S. E. DePrimo, L. M. Grabert, V. X. Fu, J. D. Brooks, and D. F. Jarrard, “Novel pathways associated with bypassing cellular senescence in human prostate epithelial cells,” Journal of Biological Chemistry, vol. 277, no. 17, pp. 14877–14883, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Zhang, K. H. Pan, and S. N. Cohen, “Senescence-specific gene expression fingerprints reveal cell-type-dependent physical clustering of up-regulated chromosomal loci,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 6, pp. 3251–3256, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Zhang, B. S. Herbert, K. H. Pan, J. W. Shay, and S. N. Cohen, “Disparate effects of telomere attrition on gene expression during replicative senescence of human mammary epithelial cells cultured under different conditions,” Oncogene, vol. 23, no. 37, pp. 6193–6198, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. J. P. Coppe, K. Kauser, J. Campisi, and C. M. Beauséjour, “Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence,” Journal of Biological Chemistry, vol. 281, no. 40, pp. 29568–29574, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. P. Coppé, C. K. Patil, F. Rodier et al., “Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor,” PLoS Biology, vol. 6, no. 12, article e301, pp. 2853–2868, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Kuilman and D. S. Peeper, “Senescence-messaging secretome: SMS-ing cellular stress,” Nature Reviews Cancer, vol. 9, no. 2, pp. 81–94, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Narita, S. Nũnez, E. Heard et al., “Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence,” Cell, vol. 113, no. 6, pp. 703–716, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Zhang, M. V. Poustovoitov, X. Ye et al., “Formation of macroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA,” Developmental Cell, vol. 8, no. 1, pp. 19–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Narita, M. Narita, V. Krizhanovsky et al., “A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation,” Cell, vol. 126, no. 3, pp. 503–514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Hayflick, “The cell biology of human aging,” The New England Journal of Medicine, vol. 295, no. 23, pp. 1302–1308, 1976. View at Google Scholar · View at Scopus
  22. S. Goldstein and D. P. Singal, “Senescence of cultured human fibroblasts: mitotic versus metabolic time,” Experimental Cell Research, vol. 88, no. 2, pp. 359–364, 1974. View at Google Scholar · View at Scopus
  23. C. B. Harley, A. B. Futcher, and C. W. Greider, “Telomeres shorten during ageing of human fibroblasts,” Nature, vol. 345, no. 6274, pp. 458–460, 1990. View at Publisher · View at Google Scholar · View at Scopus
  24. C. B. Harley, “Telomere loss: mitotic clock or genetic time bomb?” Mutation Research, vol. 256, no. 2–6, pp. 271–282, 1991. View at Google Scholar · View at Scopus
  25. S. E. Holt, J. W. Shay, and W. E. Wright, “Refining the telomere-telomerase hypothesis of aging and cancer,” Nature Biotechnology, vol. 14, no. 7, pp. 836–839, 1996. View at Google Scholar · View at Scopus
  26. E. H. Blackburn, “Switching and signaling at the telomere,” Cell, vol. 106, no. 6, pp. 661–673, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. T. de Lange, L. Shiue, R. M. Myers et al., “Structure and variability of human chromosome ends,” Molecular and Cellular Biology, vol. 10, no. 2, pp. 518–527, 1990. View at Google Scholar · View at Scopus
  28. U. M. Martens, E. A. Chavez, S. S. S. Poon, C. Schmoor, and P. M. Lansdorp, “Accumulation of short telomeres in human fibroblasts prior to replicative senescence,” Experimental Cell Research, vol. 256, no. 1, pp. 291–299, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. C. W. Greider and E. H. Blackburn, “Identification of a specific telomere terminal transferase activity in tetrahymena extracts,” Cell, vol. 43, no. 2 I, pp. 405–413, 1985. View at Google Scholar · View at Scopus
  30. N. W. Kim, M. A. Piatyszek, K. R. Prowse et al., “Specific association of human telomerase activity with immortal cells and cancer,” Science, vol. 266, no. 5193, pp. 2011–2015, 1994. View at Google Scholar · View at Scopus
  31. J. W. Shay and S. Bacchetti, “A survey of telomerase activity in human cancer,” European Journal of Cancer Part A, vol. 33, no. 5, pp. 787–791, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Vaziri and S. Benchimol, “Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span,” Current Biology, vol. 8, no. 5, pp. 279–282, 1998. View at Google Scholar · View at Scopus
  33. T. Kiyono, S. A. Foster, J. I. Koop, J. K. McDougall, D. A. Galloway, and A. J. Klingelhutz, “Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells,” Nature, vol. 396, no. 6706, pp. 84–88, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. A. G. Bodnar, M. Ouellette, M. Frolkis et al., “Extension of life-span by introduction of telomerase into normal human cells,” Science, vol. 279, no. 5349, pp. 349–352, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. W. C. Hahn, S. A. Stewart, M. W. Brooks et al., “Inhibition of telomerase limits the growth of human cancer cells,” Nature Medicine, vol. 5, no. 10, pp. 1164–1170, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. X. Zhang, V. Mar, W. Zhou, L. Harrington, and M. O. Robinson, “Telomere shortening and apoptosis in telomerase-inhibited human tumor cells,” Genes & Development, vol. 13, no. 18, pp. 2388–2399, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. F. d'Adda di Fagagna, P. M. Reaper, L. Clay-Farrace et al., “A DNA damage checkpoint response in telomere-initiated senescence,” Nature, vol. 426, no. 6963, pp. 194–198, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. U. Herbig, W. A. Jobling, B. P. C. Chen, D. J. Chen, and J. M. Sedivy, “Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21, but not p16,” Molecular Cell, vol. 14, no. 4, pp. 501–513, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Takai, A. Smogorzewska, and T. de Lange, “DNA damage foci at dysfunctional telomeres,” Current Biology, vol. 13, no. 17, pp. 1549–1556, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Serrano, A. W. Lin, M. E. McCurrach, D. Beach, and S. W. Lowe, “Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a,” Cell, vol. 88, no. 5, pp. 593–602, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Zhu, D. Woods, M. McMahon, and J. M. Bishop, “Senescence of human fibroblasts induced by oncogenic Raf,” Genes & Development, vol. 12, no. 19, pp. 2997–3007, 1998. View at Google Scholar · View at Scopus
  42. A. W. Lin, M. Barradas, J. C. Stone, L. van Aelst, M. Serrano, and S. W. Lowe, “Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling,” Genes & Development, vol. 12, no. 19, pp. 3008–3019, 1998. View at Google Scholar · View at Scopus
  43. V. V. Ogryzko, T. H. Hirai, V. R. Russanova, D. A. Barbie, and B. H. Howard, “Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent,” Molecular and Cellular Biology, vol. 16, no. 9, pp. 5210–5218, 1996. View at Google Scholar · View at Scopus
  44. B. Villeponteau, “The heterochromatin loss model of aging,” Experimental Gerontology, vol. 32, no. 4-5, pp. 383–394, 1997. View at Publisher · View at Google Scholar · View at Scopus
  45. B. H. Howard, “Replicative senescence: considerations relating to the stability of heterochromatin domains,” Experimental Gerontology, vol. 31, no. 1-2, pp. 281–293, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. Q. Chen, A. Fischer, J. D. Reagan, L. J. Yan, and B. N. Ames, “Oxidative DNA damage and senescence of human diploid fibroblast cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 10, pp. 4337–4341, 1995. View at Google Scholar · View at Scopus
  47. T. von Zglinicki, G. Saretzki, W. Docke, and C. Lotze, “Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence?” Experimental Cell Research, vol. 220, no. 1, pp. 186–193, 1995. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Parrinello, E. Samper, A. Krtolica, J. Goldstein, S. Melov, and J. Campisi, “Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts,” Nature Cell Biology, vol. 5, no. 8, pp. 741–747, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. S. J. Robles and G. R. Adami, “Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts,” Oncogene, vol. 16, no. 9, pp. 1113–1123, 1998. View at Google Scholar · View at Scopus
  50. A. Di Leonardo, S. P. Linke, K. Clarkin, and G. M. Wahl, “DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts,” Genes & Development, vol. 8, no. 21, pp. 2540–2551, 1994. View at Google Scholar · View at Scopus
  51. R. D. Ramirez, C. P. Morales, B. S. Herbert et al., “Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions,” Genes & Development, vol. 15, no. 4, pp. 398–403, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. C. J. Sherr and R. A. DePinho, “Cellular senescence: mitotic clock or culture shock?” Cell, vol. 102, no. 4, pp. 407–410, 2000. View at Google Scholar · View at Scopus
  53. N. R. Forsyth, A. P. Evans, J. W. Shay, and W. E. Wright, “Developmental differences in the immortalization of lung fibroblasts by telomerase,” Aging Cell, vol. 2, no. 5, pp. 235–243, 2003. View at Google Scholar
  54. T. von Zglinicki, R. Pilger, and N. Sitte, “Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts,” Free Radical Biology and Medicine, vol. 28, no. 1, pp. 64–74, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. W. E. Wright and J. W. Shay, “Cellular senescence as a tumor-protection mechanism: the essential role of counting,” Current Opinion in Genetics and Development, vol. 11, no. 1, pp. 98–103, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. W. E. Wright and J. W. Shay, “Historical claims and current interpretations of replicative aging,” Nature Biotechnology, vol. 20, no. 7, pp. 682–688, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Wei, W. Wei, and J. M. Sedivy, “Expression of catalytically active telomerase does not prevent premature senescence caused by overexpression of oncogenic Ha-Ras in normal human fibroblasts,” Cancer Research, vol. 59, no. 7, pp. 1539–1543, 1999. View at Google Scholar · View at Scopus
  58. M. Serrano and M. A. Blasco, “Putting the stress on senescence,” Current Opinion in Cell Biology, vol. 13, no. 6, pp. 748–753, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. N. E. Sharpless and R. A. DePinho, “Telomeres, stem cells, senescence, and cancer,” Journal of Clinical Investigation, vol. 113, no. 2, pp. 160–168, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Pedro de Magalhães, F. Chainiaux, F. de Longueville et al., “Gene expression and regulation in H2O2-induced premature senescence of human foreskin fibroblasts expressing or not telomerase,” Experimental Gerontology, vol. 39, no. 9, pp. 1379–1389, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Collado, J. Gil, A. Efeyan et al., “Tumour biology: senescence in premalignant tumours,” Nature, vol. 436, no. 7051, p. 642, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Franco, A. Canela, P. Klatt, and M. A. Blasco, “Effectors of mammalian telomere dysfunction: a comparative transcriptome analysis using mouse models,” Carcinogenesis, vol. 26, no. 9, pp. 1613–1626, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. B. W. Darbro, G. B. Schneider, and A. J. Klingelhutz, “Co-regulation of p16 and migratory genes in culture conditions that lead to premature senescence in human keratinocytes,” Journal of Investigative Dermatology, vol. 125, no. 3, pp. 499–509, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. I. Ben-Porath and R. A. Weinberg, “The signals and pathways activating cellular senescence,” International Journal of Biochemistry and Cell Biology, vol. 37, no. 5, pp. 961–976, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. N. E. Sharpless and R. A. DePinho, “Cancer: crime and punishment,” Nature, vol. 436, no. 7051, pp. 636–637, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. E. Hara, H. Tsurui, A. Shinozaki, S. Nakada, and K. Oda, “Cooperative effect of antisense-Rb and antisense-p53 oligomers on the extension of life span in human diploid fibroblasts, TIG-1,” Biochemical and Biophysical Research Communications, vol. 179, no. 1, pp. 528–534, 1991. View at Google Scholar · View at Scopus
  67. J. W. Shay, O. M. Pereira-Smith, and W. E. Wright, “A role for both RB and p53 in the regulation of human cellular senescence,” Experimental Cell Research, vol. 196, no. 1, pp. 33–39, 1991. View at Publisher · View at Google Scholar · View at Scopus
  68. W. Wei, U. Herbig, S. Wei, A. Dutriaux, and J. M. Sedivy, “Loss of retinoblastoma but not p16 function allows bypass of replicative senescence in human fibroblasts,” EMBO Reports, vol. 4, no. 11, pp. 1061–1066, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Smogorzewska and T. de Lange, “Different telomere damage signaling pathways in human and mouse cells,” The EMBO Journal, vol. 21, no. 16, pp. 4338–4348, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Campisi and F. d'Adda Di Fagagna, “Cellular senescence: when bad things happen to good cells,” Nature Reviews Molecular Cell Biology, vol. 8, no. 9, pp. 729–740, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. C. A. Afshari, P. J. Vojta, L. A. Annab, P. A. Futreal, T. B. Willard, and J. C. Barrett, “Investigation of the role of G1/S cell cycle mediators in cellular senescence,” Experimental Cell Research, vol. 209, no. 2, pp. 231–237, 1993. View at Publisher · View at Google Scholar · View at Scopus
  72. P. Atadja, H. Wong, I. Garkavtsev, C. Veillette, and K. Riabowol, “Increased activity of p53 in senescing fibroblasts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 18, pp. 8348–8352, 1995. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Webley, J. A. Bond, C. J. Jones et al., “Posttranslational modifications of p53 in replicative senescence overlapping but distinct from those induced by DNA damage,” Molecular and Cellular Biology, vol. 20, no. 8, pp. 2803–2808, 2000. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Bond, M. Haughton, J. Blaydes, V. Gire, D. Wynford-Thomas, and F. Wyllie, “Evidence that transcriptional activation by p53 plays a direct role in the induction of cellular senescence,” Oncogene, vol. 13, no. 10, pp. 2097–2104, 1996. View at Google Scholar · View at Scopus
  75. V. Gire, P. Roux, D. Wynford-Thomas, J. M. Brondello, and V. Dulic, “DNA damage checkpoint kinase Chk2 triggers replicative senescence,” The EMBO Journal, vol. 23, no. 13, pp. 2554–2563, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. V. Gire, “Dysfunctional telomeres at senescence signal cell cycle arrest via Chk2,” Cell Cycle, vol. 3, no. 10, pp. 1217–1220, 2004. View at Google Scholar · View at Scopus
  77. Q. M. Chen, J. C. Bartholomew, J. Campisi, M. Acosta, J. D. Reagan, and B. N. Ames, “Molecular analysis of H2O2-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication,” The Biochemical Journal, vol. 332, pp. 1–50, 1998. View at Google Scholar · View at Scopus
  78. G. Ferbeyre, E. de Stanchina, E. Querido, N. Baptiste, C. Prives, and S. W. Lowe, “PML is induced by oncogenic ras and promotes premature senescence,” Genes & Development, vol. 14, no. 16, pp. 2015–2027, 2000. View at Google Scholar · View at Scopus
  79. M. Pearson, R. Carbone, C. Sebastiani et al., “PML regulates p53 acetylation and premature senescence induced by oncogenic Ras,” Nature, vol. 406, no. 6792, pp. 207–210, 2000. View at Publisher · View at Google Scholar
  80. F. J. Stott, S. Bates, M. C. James et al., “The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2,” The EMBO Journal, vol. 17, no. 17, pp. 5001–5014, 1998. View at Publisher · View at Google Scholar · View at Scopus
  81. A. M. G. Dirac and R. Bernards, “Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53,” Journal of Biological Chemistry, vol. 278, no. 14, pp. 11731–11734, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Harvey, A. T. Sands, R. S. Weiss et al., “In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice,” Oncogene, vol. 8, no. 9, pp. 2457–2467, 1993. View at Google Scholar · View at Scopus
  83. T. Kamijo, F. Zindy, M. F. Roussel et al., “Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF,” Cell, vol. 91, no. 5, pp. 649–659, 1997. View at Google Scholar · View at Scopus
  84. C. J. Sherr and J. M. Roberts, “CDK inhibitors: positive and negative regulators of G-phase progression,” Genes & Development, vol. 13, no. 12, pp. 1501–1512, 1999. View at Google Scholar · View at Scopus
  85. V. Dulic, L. F. Drullinger, E. Lees, S. I. Reed, and G. H. Stein, “Altered regulation of G1 cyclins in senescent human diploid fibroblasts: accumulation of inactive cyclin E-Cdk2 and cyclin D1-Cdk2 complexes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 23, pp. 11034–11038, 1993. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Noda, Y. Ning, S. F. Venable, O. M. Pereira-Smith, and J. R. Smith, “Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen,” Experimental Cell Research, vol. 211, no. 1, pp. 90–98, 1994. View at Publisher · View at Google Scholar · View at Scopus
  87. H. Tahara, K. Kamada, E. Sato et al., “Increase in expression levels of interferon-inducible genes in senescent human diploid fibroblasts and in SV40-transformed human fibroblasts with extended lifespan,” Oncogene, vol. 11, no. 6, pp. 1125–1132, 1995. View at Google Scholar · View at Scopus
  88. G. H. Stein, L. F. Drullinger, A. Soulard, and V. Dulić, “Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts,” Molecular and Cellular Biology, vol. 19, no. 3, pp. 2109–2117, 1999. View at Google Scholar · View at Scopus
  89. U. Herbig, W. Wei, A. Dutriaux, W. A. Jobling, and J. M. Sedivy, “Real-time imaging of transcriptional activation in live cells reveals rapid up-regulation of the cyclin-dependent kinase inhibitor gene CDKN1A in replicative cellular senescence,” Aging cell, vol. 2, no. 6, pp. 295–304, 2003. View at Google Scholar · View at Scopus
  90. M. Modestou, V. Puig-Antich, C. Korgaonkar, A. Eapen, and D. E. Quelle, “The alternative reading frame tumor suppressor inhibits growth through p21-dependent and p21-independent pathways,” Cancer Research, vol. 61, no. 7, pp. 3145–3150, 2001. View at Google Scholar · View at Scopus
  91. W. Wei, R. M. Hemmer, and J. M. Sedivy, “Role of p14 in replicative and induced senescence of human fibroblasts,” Molecular and Cellular Biology, vol. 21, no. 20, pp. 6748–6757, 2001. View at Publisher · View at Google Scholar · View at Scopus
  92. B. B. McConnell, M. Starborg, S. Brookes, and G. Peters, “Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts,” Current Biology, vol. 8, no. 6, pp. 351–354, 1998. View at Google Scholar · View at Scopus
  93. B. D. Chang, K. Watanabe, E. V. Broude et al., “Effects of p21 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 8, pp. 4291–4296, 2000. View at Google Scholar · View at Scopus
  94. J. P. Brown, W. Wei, and J. M. Sedivy, “Bypass of senescenoe after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts,” Science, vol. 277, no. 5327, pp. 831–834, 1997. View at Publisher · View at Google Scholar · View at Scopus
  95. A. S. C. Medcalf, A. J. P. Klein-Szanto, and V. J. Cristofalo, “Expression of p21 is not required for senescence of human fibroblasts,” Cancer Research, vol. 56, no. 20, pp. 4582–4585, 1996. View at Google Scholar · View at Scopus
  96. C. M. Beauséjour, A. Krtolica, F. Galimi et al., “Reversal of human cellular senescence: roles of the p53 and p16 pathways,” The EMBO Journal, vol. 22, no. 16, pp. 4212–4222, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. D. A. Alcorta, Y. Xiong, D. Phelps, G. Hannon, D. Beach, and J. C. Barrett, “Involvement of the cyclin-dependent kinase inhibitor p16INK4a in replicative senescence of normal human fibroblasts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 24, pp. 13742–13747, 1996. View at Publisher · View at Google Scholar · View at Scopus
  98. E. Hara, R. Smith, D. Parry, H. Tahara, S. Stone, and G. Peters, “Regulation of p16 expression and its implications for cell immortalization and senescence,” Molecular and Cellular Biology, vol. 16, no. 3, pp. 859–867, 1996. View at Google Scholar · View at Scopus
  99. H. Wong and K. Riabowol, “Differential CDK-inhibitor gene expression in aging human diploid fibroblasts,” Experimental Gerontology, vol. 31, no. 1-2, pp. 311–325, 1996. View at Publisher · View at Google Scholar · View at Scopus
  100. K. Itahana, Y. Zou, Y. Itahana et al., “Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1,” Molecular and Cellular Biology, vol. 23, no. 1, pp. 389–401, 2003. View at Publisher · View at Google Scholar · View at Scopus
  101. S. R. Romanov, B. K. Kozakiewicz, C. R. Holst, M. R. Stampfer, L. M. Haupt, and T. D. Tlsty, “Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes,” Nature, vol. 409, no. 6820, pp. 633–637, 2001. View at Publisher · View at Google Scholar
  102. W. Y. Kim and N. E. Sharpless, “The regulation of INK4/ARF in cancer and aging,” Cell, vol. 127, no. 2, pp. 265–275, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. J. Gil and G. Peters, “Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all,” Nature Reviews Molecular Cell Biology, vol. 7, no. 9, pp. 667–677, 2006. View at Publisher · View at Google Scholar · View at Scopus
  104. C. J. Collins and J. M. Sedivy, “Involvement of the INK4a/Arf gene locus in senescence,” Aging Cell, vol. 2, no. 3, pp. 145–150, 2003. View at Google Scholar · View at Scopus
  105. J. L. Jacobs, K. Kieboom, S. Marino, R. A. DePinho, and M. van Lohuizen, “The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus,” Nature, vol. 397, no. 6715, pp. 164–168, 1999. View at Publisher · View at Google Scholar · View at Scopus
  106. A. P. Bracken, D. Kleine-Kohlbrecher, N. Dietrich et al., “The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells,” Genes & Development, vol. 21, no. 5, pp. 525–530, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. J. Gil, D. Bernard, D. Martínez, and D. Beach, “Polycomb CBX7 has a unifying role in cellular lifespan,” Nature Cell Biology, vol. 6, no. 1, pp. 67–72, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. N. Dietrich, A. P. Bracken, E. Trinh et al., “Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A-ARF locus,” The EMBO Journal, vol. 26, no. 6, pp. 1637–1648, 2007. View at Publisher · View at Google Scholar
  109. E. Hara, T. Yamaguchi, H. Nojima et al., “Id-related genes encoding helix-loop-helix proteins are required for G1 progression and are repressed in senescent human fibroblasts,” Journal of Biological Chemistry, vol. 269, no. 3, pp. 2139–2145, 1994. View at Google Scholar · View at Scopus
  110. W. Zheng, H. Wang, L. Xue, Z. Zhang, and T. Tong, “Regulation of cellular senescence and p16 expression by Id1 and E47 proteins in human diploid fibroblast,” Journal of Biological Chemistry, vol. 279, no. 30, pp. 31524–31532, 2004. View at Publisher · View at Google Scholar · View at Scopus
  111. N. Ohtani, Z. Zebedee, T. J. G. Huot et al., “Opposing effects of Ets and Id proteins on p16 expression during cellular senescence,” Nature, vol. 409, no. 6823, pp. 1067–1070, 2001. View at Publisher · View at Google Scholar · View at Scopus
  112. R. M. Alani, A. Z. Young, and C. B. Shifflett, “Id1 regulation of cellular senescence through transcriptional repression of p16/Ink4a,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 14, pp. 7812–7816, 2001. View at Publisher · View at Google Scholar · View at Scopus
  113. R. M. Alani, J. Hasskarl, M. Grace, M. C. Hernandez, M. A. Israel, and K. Münger, “Immortalization of primary human keratinocytes by the helix-loop-helix protein, Id-1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 17, pp. 9637–9641, 1999. View at Publisher · View at Google Scholar · View at Scopus
  114. B. J. Nickoloff, V. Chaturvedi, P. Bacon, J. Z. Qin, M. F. Denning, and M. O. Diaz, “Id-1 delays senescence but does not immortalize keratinocytes,” Journal of Biological Chemistry, vol. 275, no. 36, pp. 27501–27504, 2000. View at Publisher · View at Google Scholar · View at Scopus
  115. J. Tang, G. M. Gordon, B. J. Nickoloff, and K. E. Foreman, “The helix-loop-helix protein Id-1 delays onset of replicative senescence in human endothelial cells,” Laboratory Investigation, vol. 82, no. 8, pp. 1073–1079, 2002. View at Google Scholar · View at Scopus
  116. N. E. Sharpless, N. Bardeesy, K. H. Lee et al., “Loss of p16 with retention of p19 predisposes mice to tumorigenesis,” Nature, vol. 413, no. 6851, pp. 86–91, 2001. View at Publisher · View at Google Scholar · View at Scopus
  117. B. Vogelstein and K. W. Kinzler, “The multistep nature of cancer,” Trends in Genetics, vol. 9, no. 4, pp. 138–141, 1993. View at Publisher · View at Google Scholar · View at Scopus
  118. J. Campisi, “Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors,” Cell, vol. 120, no. 4, pp. 513–522, 2005. View at Publisher · View at Google Scholar · View at Scopus
  119. R. Sager, “Senescence as a mode of tumor suppression,” Environmental Health Perspectives, vol. 93, pp. 59–62, 1991. View at Google Scholar · View at Scopus
  120. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Google Scholar · View at Scopus
  121. T. M. Bryan, A. Englezou, J. Gupta, S. Bacchetti, and R. R. Reddel, “Telomere elongation in immortal human cells without detectable telomerase activity,” The EMBO Journal, vol. 14, no. 17, pp. 4240–4248, 1995. View at Google Scholar · View at Scopus
  122. A. Muntoni and R. R. Reddel, “The first molecular details of ALT in human tumor cells,” Human Molecular Genetics, vol. 14, no. 2, pp. R191–R196, 2005. View at Publisher · View at Google Scholar · View at Scopus
  123. W. C. Hahn, C. M. Counter, A. S. Lundberg, R. L. Beijersbergen, M. W. Brooks, and R. A. Weinberg, “Creation of human tumour cells with defined genetic elements,” Nature, vol. 400, no. 6743, pp. 464–468, 1999. View at Publisher · View at Google Scholar · View at Scopus
  124. E. González-Suárez, E. Samper, A. Ramírez et al., “Increased epidermal tumors and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, mTERT, in basal keratinocytes,” The EMBO Journal, vol. 20, no. 11, pp. 2619–2630, 2001. View at Publisher · View at Google Scholar · View at Scopus
  125. S. E. Artandi, S. Alson, M. K. Tietze et al., “Constitutive telomerase expression promotes mammary carcinomas in aging mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 8191–8196, 2002. View at Publisher · View at Google Scholar · View at Scopus
  126. A. Canela, J. Martín-Caballero, J. M. Flores, and M. A. Blasco, “Constitutive expression of tert in thymocytes leads to increased incidence and dissemination of T-cell lymphoma in Lck-tert mice,” Molecular and Cellular Biology, vol. 24, no. 10, pp. 4275–4293, 2004. View at Publisher · View at Google Scholar · View at Scopus
  127. A. K. Bednarek, Y. Chu, T. J. Slaga, and C. M. Aldaz, “Telomerase and cell proliferation in mouse skin papillomas,” Molecular Carcinogenesis, vol. 20, no. 4, pp. 329–331, 1997. View at Publisher · View at Google Scholar · View at Scopus
  128. E. González-Suárez, J. M. Flores, and M. A. Blasco, “Cooperation between p53 mutation and high telomerase transgenic expression in spontaneous cancer development,” Molecular and Cellular Biology, vol. 22, no. 20, pp. 7291–7301, 2002. View at Publisher · View at Google Scholar
  129. M. A. Blasco, H. W. Lee, M. P. Hande et al., “Telomere shortening and tumor formation by mouse cells lacking telomerase RNA,” Cell, vol. 91, no. 1, pp. 25–34, 1997. View at Publisher · View at Google Scholar · View at Scopus
  130. C. M. Khoo, D. R. Carrasco, M. W. Bosenberg, J. H. Paik, and R. A. DePinho, “Ink4a/Arf tumor suppressor does not modulate the degenerative conditions or tumor spectrum of the telomerase-deficient mouse,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 10, pp. 3931–3936, 2007. View at Publisher · View at Google Scholar · View at Scopus
  131. R. A. Greenberg, L. Chin, A. Femino et al., “Short dysfunctional telomeres impair tumorigenesis in the INK4aΔ2/3 cancer-prone mouse,” Cell, vol. 97, no. 4, pp. 515–525, 1999. View at Publisher · View at Google Scholar · View at Scopus
  132. E. González-Suárez, E. Samper, J. M. Flores, and M. A. Blasco, “Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis,” Nature Genetics, vol. 26, no. 1, pp. 114–117, 2000. View at Publisher · View at Google Scholar · View at Scopus
  133. K. L. Rudolph, M. Millard, M. W. Bosenberg, and R. A. DePinho, “Telomere dysfunction and evolution of intestinal carcinoma in mice and humans,” Nature Genetics, vol. 28, no. 2, pp. 155–159, 2001. View at Publisher · View at Google Scholar · View at Scopus
  134. K. K. Wong, R. S. Maser, R. M. Bachoo et al., “Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing,” Nature, vol. 421, no. 6923, pp. 643–648, 2003. View at Publisher · View at Google Scholar · View at Scopus
  135. L. Qi, M. A. Strong, B. O. Karim, D. L. Huso, and C. W. Greider, “Telomere fusion to chromosome breaks reduces oncogenic translocations and tumour formation,” Nature Cell Biology, vol. 7, no. 7, pp. 706–711, 2005. View at Publisher · View at Google Scholar · View at Scopus
  136. L. Qi, M. A. Strong, B. O. Karim, M. Armanios, D. L. Huso, and C. W. Greider, “Short telomeres and ataxia-telangiectasia mutated deficiency cooperatively increase telomere dysfunction and suppress tumorigenesis,” Cancer Research, vol. 63, no. 23, pp. 8188–8196, 2003. View at Google Scholar · View at Scopus
  137. X. Guo, Y. Deng, Y. Lin et al., “Dysfunctional telomeres activate an ATM-ATR-dependent DNA damage response to suppress tumorigenesis,” The EMBO Journal, vol. 26, no. 22, pp. 4709–4719, 2007. View at Publisher · View at Google Scholar · View at Scopus
  138. A. Lechel, H. Holstege, Y. Begus et al., “Telomerase deletion limits progression of p53-mutant hepatocellular carcinoma with short telomeres in chronic liver disease,” Gastroenterology, vol. 132, no. 4, pp. 1465–1475, 2007. View at Publisher · View at Google Scholar · View at Scopus
  139. E. González-Suárez, F. A. Goytisolo, J. M. Flores, and M. A. Blasco, “Telomere dysfunction results in enhanced organismal sensitivity to the alkylating agent N-methyl-N-nitrosourea,” Cancer Research, vol. 63, no. 21, pp. 7047–7050, 2003. View at Google Scholar · View at Scopus
  140. K. L. Rudolph, S. Chang, H. W. Lee et al., “Longevity, stress response, and cancer in aging telomerase-deficient mice,” Cell, vol. 96, no. 5, pp. 701–712, 1999. View at Google Scholar · View at Scopus
  141. P. A. Farazi, J. Glickman, J. Horner, and R. A. DePinho, “Cooperative interactions of p53 mutation, telomere dysfunction, and chronic liver damage in hepatocellular carcinoma progression,” Cancer Research, vol. 66, no. 9, pp. 4766–4773, 2006. View at Publisher · View at Google Scholar · View at Scopus
  142. D. M. Feldser and C. W. Greider, “Short telomeres limit tumor progression in vivo by inducing senescence,” Cancer Cell, vol. 11, no. 5, pp. 461–469, 2007. View at Publisher · View at Google Scholar · View at Scopus
  143. W. Cosme-Blanco, M. F. Shen, A. J. F. Lazar et al., “Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence,” EMBO Reports, vol. 8, no. 5, pp. 497–503, 2007. View at Publisher · View at Google Scholar · View at Scopus
  144. M. Braig, S. Lee, C. Loddenkemper et al., “Oncogene-induced senescence as an initial barrier in lymphoma development,” Nature, vol. 436, no. 7051, pp. 660–665, 2005. View at Publisher · View at Google Scholar · View at Scopus
  145. C. J. Sarkisian, B. A. Keister, D. B. Stairs, R. B. Boxer, S. E. Moody, and L. A. Chodosh, “Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis,” Nature Cell Biology, vol. 9, no. 5, pp. 493–505, 2007. View at Publisher · View at Google Scholar · View at Scopus
  146. J. P. Morton, P. Timpson, S. A. Karim et al., “Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 1, pp. 246–251, 2010. View at Publisher · View at Google Scholar · View at Scopus
  147. E. L. Denchi, C. Attwooll, D. Pasini, and K. Helin, “Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland,” Molecular and Cellular Biology, vol. 25, no. 7, pp. 2660–2672, 2005. View at Publisher · View at Google Scholar · View at Scopus
  148. Z. Chen, L. C. Trotman, D. Shaffer et al., “Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis,” Nature, vol. 436, no. 7051, pp. 725–730, 2005. View at Publisher · View at Google Scholar · View at Scopus
  149. D. Dankort, E. Filenova, M. Collado, M. Serrano, K. Jones, and M. McMahon, “A new mouse model to explore the initiation, progression, and therapy of BRAF-induced lung tumors,” Genes & Development, vol. 21, no. 4, pp. 379–384, 2007. View at Publisher · View at Google Scholar · View at Scopus
  150. L. Ha, T. Lchikawa, M. Anver et al., “ARF functions as a melanoma tumor suppressor by inducing p53-independent senescence,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 26, pp. 10968–10973, 2007. View at Publisher · View at Google Scholar
  151. N. Dhomen, J. S. Reis-Filho, S. da Rocha Dias et al., “Oncogenic Braf induces melanocyte senescence and melanoma in mice,” Cancer Cell, vol. 15, no. 4, pp. 294–303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  152. V. K. Goel, N. Ibrahim, G. Jiang et al., “Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice,” Oncogene, vol. 28, no. 23, pp. 2289–2298, 2009. View at Publisher · View at Google Scholar · View at Scopus
  153. P. K. Majumder, C. Grisanzio, F. O'Connell et al., “A prostatic intraepithelial neoplasia-dependent p27 checkpoint induces senescence and inhibits cell proliferation and cancer progression,” Cancer Cell, vol. 14, no. 2, pp. 146–155, 2008. View at Publisher · View at Google Scholar · View at Scopus
  154. M. Xu, Q. Yu, R. Subrahmanyam, M. J. Difilippantonio, T. Ried, and J. M. Sen, “β-catenin expression results in p53-independent DNA damage and oncogene-induced senescence in prelymphomagenic thymocytes in vivo,” Molecular and Cellular Biology, vol. 28, no. 5, pp. 1713–1723, 2008. View at Publisher · View at Google Scholar · View at Scopus
  155. A. P. Young, S. Schisio, Y. A. Minamishima et al., “VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400,” Nature Cell Biology, vol. 10, no. 3, pp. 361–369, 2008. View at Publisher · View at Google Scholar · View at Scopus
  156. C. Michaloglou, L. C. W. Vredeveld, M. S. Soengas et al., “BRAF-associated senescence-like cell cycle arrest of human naevi,” Nature, vol. 436, no. 7051, pp. 720–724, 2005. View at Publisher · View at Google Scholar · View at Scopus
  157. S. Courtois-Cox, S. M. Genther Williams, E. E. Reczek et al., “A negative feedback signaling network underlies oncogene-induced senescence,” Cancer Cell, vol. 10, no. 6, pp. 459–472, 2006. View at Publisher · View at Google Scholar · View at Scopus
  158. V. C. Gray-Schopfer, S. C. Cheong, H. Chong et al., “Cellular senescence in naevi and immortalisation in melanoma: a role for p16?” British Journal of Cancer, vol. 95, no. 4, pp. 496–505, 2006. View at Publisher · View at Google Scholar · View at Scopus
  159. J. Bartkova, N. Rezaei, M. Liontos et al., “Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints,” Nature, vol. 444, no. 7119, pp. 633–637, 2006. View at Publisher · View at Google Scholar · View at Scopus
  160. P. Sun, N. Yoshizuka, L. New et al., “PRAK is essential for ras-induced senescence and tumor suppression,” Cell, vol. 128, no. 2, pp. 295–308, 2007. View at Publisher · View at Google Scholar · View at Scopus
  161. C. A. Schmitt, “Senescence, apoptosis and therapy—cutting the lifelines of cancer,” Nature Reviews Cancer, vol. 3, no. 4, pp. 286–295, 2003. View at Google Scholar · View at Scopus
  162. J. W. Shay and I. B. Roninson, “Hallmarks of senescence in carcinogenesis and cancer therapy,” Oncogene, vol. 23, no. 16, pp. 2919–2933, 2004. View at Publisher · View at Google Scholar · View at Scopus
  163. C. A. Schmitt, J. S. Fridman, M. Yang et al., “A senescence program controlled by p53 and p16 contributes to the outcome of cancer therapy,” Cell, vol. 109, no. 3, pp. 335–346, 2002. View at Publisher · View at Google Scholar · View at Scopus
  164. W. E. Wright, M. A. Piatyszek, W. E. Rainey, W. Byrd, and J. W. Shay, “Telomerase activity in human germline and embryonic tissues and cells,” Developmental Genetics, vol. 18, no. 2, pp. 173–179, 1996. View at Publisher · View at Google Scholar · View at Scopus
  165. G. A. Ulaner, J. F. Hu, T. H. Vu, L. C. Giudice, and A. R. Hoffman, “Telomerase activity in human development is regulated by human telomerase reverse transcriptase (hTERT) transcription and by alternate splicing of hTERT transcripts,” Cancer Research, vol. 58, no. 18, pp. 4168–4172, 1998. View at Google Scholar · View at Scopus
  166. C. B. Harley, “Telomerase and cancer therapeutics,” Nature Reviews Cancer, vol. 8, no. 3, pp. 167–179, 2008. View at Publisher · View at Google Scholar · View at Scopus
  167. L. R. Kelland, “Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics—current status and future prospects,” European Journal of Cancer, vol. 41, no. 7, pp. 971–979, 2005. View at Publisher · View at Google Scholar · View at Scopus
  168. J. W. Shay and W. E. Wright, “Telomerase therapeutics for cancer: challenges and new directions,” Nature Reviews Drug Discovery, vol. 5, no. 7, pp. 577–584, 2006. View at Publisher · View at Google Scholar · View at Scopus
  169. K. Damm, U. Hemmann, P. Garin-Chesa et al., “A highly selective telomerase inhibitor limiting human cancer cell proliferation,” The EMBO Journal, vol. 20, no. 24, pp. 6958–6968, 2002. View at Publisher · View at Google Scholar
  170. J. H. Kim, J. H. Kim, G. E. Lee, S. W. Kim, and I. K. Chung, “Identification of a quinoxaline derivative that is a potent telomerase inhibitor leading to cellular senescence of human cancer cells,” The Biochemical Journal, vol. 373, no. 2, pp. 523–529, 2003. View at Publisher · View at Google Scholar · View at Scopus
  171. A. Preto, S. K. Singhrao, M. F. Haughton, D. Kipling, D. Wynford-Thomas, and C. J. Jones, “Telomere erosion triggers growth arrest but not cell death in human cancer cells retaining wild-type p53: implications for antitelomerase therapy,” Oncogene, vol. 23, no. 23, pp. 4136–4145, 2004. View at Publisher · View at Google Scholar · View at Scopus
  172. J. F. Riou, L. Guittat, P. Mailliet et al., “Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 5, pp. 2672–2677, 2002. View at Publisher · View at Google Scholar · View at Scopus
  173. M. A. Shammas, H. Koley, D. G. Beer, C. Li, R. K. Goyal, and N. C. Munshi, “Growth arrest, apoptosis, and telomere shortening of Barrett's-associated adenocarcinoma cells by a telomerase inhibitor,” Gastroenterology, vol. 126, no. 5, pp. 1337–1346, 2004. View at Publisher · View at Google Scholar · View at Scopus
  174. M. W. Djojosubroto, A. C. Chin, N. Go et al., “Telomerase antagonists GRN163 and GRN163L inhibit tumor growth and increase chemosensitivity of human hepatoma,” Hepatology, vol. 42, no. 5, pp. 1127–1136, 2005. View at Publisher · View at Google Scholar · View at Scopus
  175. P. F. Brunsvig, S. Aamdal, M. K. Gjertsen et al., “Telomerase peptide vaccination: a phase I/II study in patients with non-small cell lung cancer,” Cancer Immunology, Immunotherapy, vol. 55, no. 12, pp. 1553–1564, 2006. View at Publisher · View at Google Scholar · View at Scopus
  176. W. G. Deng, G. Jayachandran, G. Wu, K. Xu, J. A. Roth, and L. Ji, “Tumor-specific activation of human telomerase reverses transcriptase promoter activity by activating enhancer-binding protein-2β in human lung cancer cells,” Journal of Biological Chemistry, vol. 282, no. 36, pp. 26460–26470, 2007. View at Publisher · View at Google Scholar · View at Scopus
  177. A. E. Hochreiter, H. Xiao, E. M. Goldblatt et al., “Telomerase template antagonist GRN163L disrupts telomere maintenance, tumor growth, and metastasis of breast cancer,” Clinical Cancer Research, vol. 12, no. 10, pp. 3184–3192, 2006. View at Publisher · View at Google Scholar · View at Scopus
  178. W. G. An, R. C. Schnur, L. Neckers, and M. V. Blagosklonny, “Depletion of p185erbB2, Raf-1 and mutant p53 proteins by geldanamycin derivatives correlates with antiproliferative activity,” Cancer Chemotherapy and Pharmacology, vol. 40, no. 1, pp. 60–64, 1997. View at Publisher · View at Google Scholar · View at Scopus
  179. G. Dasgupta and J. Momand, “Geldanamycin prevents nuclear translocation of mutant p53,” Experimental Cell Research, vol. 237, no. 1, pp. 29–37, 1997. View at Publisher · View at Google Scholar · View at Scopus
  180. G. Selivanova, L. Ryabchenko, E. Jansson, V. Iotsova, and K. G. Wiman, “Reactivation of mutant p53 through interaction of a C-terminal peptide with the core domain,” Molecular and Cellular Biology, vol. 19, no. 5, pp. 3395–3402, 1999. View at Google Scholar · View at Scopus
  181. B. A. Foster, H. A. Coffey, M. J. Morin, and F. Rastinejad, “Pharmacological rescue of mutant p53 conformation and function,” Science, vol. 286, no. 5449, pp. 2507–2510, 1999. View at Publisher · View at Google Scholar · View at Scopus
  182. R. E. Buller, I. B. Runnebaum, B. Y. Karlan et al., “A phase I/II trial of rAd/p53 (SCH 58500) gene replacement in recurrent ovarian cancer,” Cancer Gene Therapy, vol. 9, no. 7, pp. 553–566, 2002. View at Publisher · View at Google Scholar · View at Scopus
  183. K. Butz, C. Denk, A. Ullmann, M. Scheffner, and F. Hoppe-Seyler, “Induction of apoptosis in human papillomavirus-positive cancer cells by peptide aptamers targeting the viral E6 oncoprotein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 12, pp. 6693–6697, 2000. View at Publisher · View at Google Scholar · View at Scopus
  184. P. Seth, U. Brinkmann, G. N. Schwartz et al., “Adenovirus-mediated gene transfer to human breast tumor cells: an approach for cancer gene therapy and bone marrow purging,” Cancer Research, vol. 56, no. 6, pp. 1346–1351, 1996. View at Google Scholar · View at Scopus
  185. S. R. Quist, S. Wang-Gohrke, T. Köhler, R. Kreienberg, and I. B. Runnebaum, “Cooperative effect of adenoviral p53 gene therapy and standard chemotherapy in ovarian cancer cells independent of the endogenous p53 status,” Cancer Gene Therapy, vol. 11, no. 8, pp. 547–554, 2004. View at Publisher · View at Google Scholar · View at Scopus
  186. S. Hietanen, S. Lain, E. Krausz, C. Blattner, and D. P. Lane, “Activation of p53 in cervical carcinoma cells by small molecules,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 15, pp. 8501–8506, 2000. View at Publisher · View at Google Scholar · View at Scopus
  187. T. Maehama, A. Patzelt, M. Lengert et al., “Selective down-regulation of human papillomavirus transcription by 2-deoxyglucose,” International Journal of Cancer, vol. 76, no. 5, pp. 639–646, 1998. View at Publisher · View at Google Scholar · View at Scopus
  188. J. Nemunaitis, S. G. Swisher, T. Timmons et al., “Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 18, no. 3, pp. 609–622, 2000. View at Google Scholar
  189. C. P. Martins, L. Brown-Swigart, and G. I. Evan, “Modeling the therapeutic efficacy of p53 restoration in tumors,” Cell, vol. 127, no. 7, pp. 1323–1334, 2006. View at Publisher · View at Google Scholar · View at Scopus
  190. A. Ventura, D. G. Kirsch, M. E. McLaughlin et al., “Restoration of p53 function leads to tumour regression in vivo,” Nature, vol. 445, no. 7128, pp. 661–665, 2007. View at Publisher · View at Google Scholar · View at Scopus
  191. W. Xue, L. Zender, C. Miething et al., “Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas,” Nature, vol. 445, no. 7128, pp. 656–660, 2007. View at Publisher · View at Google Scholar · View at Scopus
  192. C. H. Wu, J. van Riggelen, A. Yetil et al., “Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 32, pp. 13028–13033, 2007. View at Publisher · View at Google Scholar
  193. L. Soucek, J. Whitfield, C. P. Martins et al., “Modelling Myc inhibition as a cancer therapy,” Nature, vol. 455, no. 7213, pp. 679–683, 2008. View at Publisher · View at Google Scholar · View at Scopus
  194. I. B. Roninson, “Tumor senescence as a determinant of drug response in vivo,” Drug Resistance Updates, vol. 5, no. 5, pp. 204–208, 2002. View at Publisher · View at Google Scholar · View at Scopus
  195. B.-D. Chang, E. V. Broude, M. Dokmanovic et al., “A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents,” Cancer Research, vol. 59, no. 15, pp. 3761–3767, 1999. View at Google Scholar
  196. B. D. Chang, Y. Xuan, E. V. Broude et al., “Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs,” Oncogene, vol. 18, no. 34, pp. 4808–4818, 1999. View at Publisher · View at Google Scholar · View at Scopus
  197. L. W. Elmore, C. W. Rehder, X. Di et al., “Adriamycin-induced senescence in breast tumor cells involves functional p53 and telomere dysfunction,” Journal of Biological Chemistry, vol. 277, no. 38, pp. 35509–35515, 2002. View at Publisher · View at Google Scholar · View at Scopus
  198. X. Wang, S. C. H. Wong, J. Pan et al., “Evidence of cisplatin-induced senescent-like growth arrest in nasopharyngeal carcinoma cells,” Cancer Research, vol. 58, no. 22, pp. 5019–5022, 1998. View at Google Scholar · View at Scopus
  199. R. H. te Poele, A. L. Okorokov, L. Jardine, J. Cummings, and S. P. Joel, “DNA damage is able to induce senescence in tumor cells in vitro and in vivo,” Cancer Research, vol. 62, no. 6, pp. 1876–1883, 2002. View at Google Scholar
  200. M. Collado, M. A. Blasco, and M. Serrano, “Cellular senescence in cancer and aging,” Cell, vol. 130, no. 2, pp. 223–233, 2007. View at Publisher · View at Google Scholar · View at Scopus
  201. V. Paradis, N. Youssef, D. Dargère et al., “Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas,” Human Pathology, vol. 32, no. 3, pp. 327–332, 2001. View at Publisher · View at Google Scholar · View at Scopus
  202. J. J. Going, R. C. Stuart, M. Downie, A. J. Fletcher-Monaghan, and W. N. Keith, “‘Senescence-associated’ β-galactosidase activity in the upper gastrointestinal tract,” Journal of Pathology, vol. 196, no. 4, pp. 394–400, 2002. View at Publisher · View at Google Scholar
  203. S. U. Wiemann, A. Satyanarayana, M. Tsahuridu et al., “Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis,” FASEB Journal, vol. 16, no. 9, pp. 935–942, 2002. View at Publisher · View at Google Scholar · View at Scopus
  204. U. Herbig, M. Ferreira, L. Condel, D. Carey, and J. M. Sedivy, “Cellular senescence in aging primates,” Science, vol. 311, no. 5765, p. 1257, 2006. View at Publisher · View at Google Scholar · View at Scopus
  205. K. Mishima, J. T. Handa, A. Aotaki-Keen, G. A. Lutty, L. S. Morse, and L. M. Hjelmeland, “Senescence-associated β-galactosidase histochemistry for the primate eye,” Investigative Ophthalmology and Visual Science, vol. 40, no. 7, pp. 1590–1593, 1999. View at Google Scholar · View at Scopus
  206. J. C. Jeyapalan, M. Ferreira, J. M. Sedivy, and U. Herbig, “Accumulation of senescent cells in mitotic tissue of aging primates,” Mechanisms of Ageing and Development, vol. 128, no. 1, pp. 36–44, 2007. View at Publisher · View at Google Scholar · View at Scopus
  207. J. S. Price, J. G. Waters, C. Darrah et al., “The role of chondrocyte senescence in osteoarthritis,” Aging Cell, vol. 1, no. 1, pp. 57–65, 2002. View at Google Scholar · View at Scopus
  208. M. Fenton, S. Barker, D. J. Kurz, and J. D. Erusalimsky, “Cellular senescence after single and repeated balloon catheter denudations of rabbit carotid arteries,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 2, pp. 220–226, 2001. View at Google Scholar · View at Scopus
  209. C. Matthews, I. Gorenne, S. Scott et al., “Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress,” Circulation Research, vol. 99, no. 2, pp. 156–164, 2006. View at Publisher · View at Google Scholar · View at Scopus
  210. E. Vasile, Y. Tomita, L. F. Brown, O. Kocher, and H. F. Dvorak, “Differential expression of thymosin β-10 by early passage and senescent vascular endothelium is modulated by VPF/VEGF: evidence for senescent endothelial cells in vivo at sites of atherosclerosis,” FASEB Journal, vol. 15, no. 2, pp. 458–466, 2001. View at Publisher · View at Google Scholar · View at Scopus
  211. T. Minamino and I. Komuro, “Vascular cell senescence: contribution to atherosclerosis,” Circulation Research, vol. 100, no. 1, pp. 15–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  212. B. E. Flanary, N. W. Sammons, C. Nguyen, D. Walker, and W. J. Streit, “Evidence that aging and amyloid promote microglial cell senescence,” Rejuvenation Research, vol. 10, no. 1, pp. 61–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  213. T. Tsuji, K. Aoshiba, and A. Nagai, “Alveolar cell senescence in patients with pulmonary emphysema,” American Journal of Respiratory and Critical Care Medicine, vol. 174, no. 8, pp. 886–893, 2006. View at Publisher · View at Google Scholar · View at Scopus
  214. K.-C. Müller, L. Welker, K. Paasch et al., “Lung fibroblasts from patients with emphysema showmarkers of senescence in vitro,” Respiratory Research, vol. 7, article 32, 2006. View at Publisher · View at Google Scholar
  215. E. L. Schneider and Y. Mitsui, “The relationship between in vitro cellular aging and in vivo human age,” Proceedings of the National Academy of Sciences of the United States of America, vol. 73, no. 10, pp. 3584–3588, 1976. View at Google Scholar · View at Scopus
  216. J. G. Rheinwald and H. Green, “Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells,” Cell, vol. 6, no. 3, pp. 331–334, 1975. View at Google Scholar · View at Scopus
  217. G. M. Martin, C. A. Sprague, and C. J. Epstein, “Replicative life-span of cultivated human cells. Effects of donor's age, tissue, and genotype,” Laboratory Investigation, vol. 23, no. 1, pp. 86–92, 1970. View at Google Scholar · View at Scopus
  218. S. A. Bruce, S. F. Deamond, and P. O. P. Ts'o, “In vitro senescence of syrian hamster mesenchymal cells of fetal to aged adult origin. Inverse relationship between in vivo donor age and in vitro proliferative capacity,” Mechanisms of Ageing and Development, vol. 34, no. 2, pp. 151–173, 1986. View at Google Scholar · View at Scopus
  219. E. L. Bierman, “The effect of donor age on the in vitro life span of cultured human arterial smooth-muscle cells,” In Vitro, vol. 14, no. 11, pp. 951–955, 1978. View at Google Scholar · View at Scopus
  220. V. J. Cristofalo, R. G. Allen, R. J. Pignolo, B. G. Martin, and J. C. Beck, “Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 18, pp. 10614–10619, 1998. View at Publisher · View at Google Scholar · View at Scopus
  221. S. Goldstein, S. Murano, H. Benes et al., “Studies on the molecular-genetic basis of replicative senescence in Werner syndrome and normal fibroblasts,” Experimental Gerontology, vol. 24, no. 5-6, pp. 461–468, 1989. View at Publisher · View at Google Scholar · View at Scopus
  222. K. I. Nakamura, N. Izumiyama-Shimomura, M. Sawabe et al., “Comparative analysis of telomere lengths and erosion with age in human epidermis and lingual epithelium,” Journal of Investigative Dermatology, vol. 119, no. 5, pp. 1014–1019, 2002. View at Publisher · View at Google Scholar · View at Scopus
  223. R. C. Allsopp, H. Vaziri, C. Patterson et al., “Telomere length predicts replicative capacity of human fibroblasts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 21, pp. 10114–10118, 1992. View at Publisher · View at Google Scholar · View at Scopus
  224. R. M. Cawthon, K. R. Smith, E. O'Brien, A. Sivatchenko, and R. A. Kerber, “Association between telomere length in blood and mortality in people aged 60 years or older,” The Lancet, vol. 361, no. 9355, pp. 393–395, 2003. View at Publisher · View at Google Scholar · View at Scopus
  225. N. D. Hastie, M. Dempster, M. G. Dunlop, A. M. Thompson, D. K. Green, and R. C. Allshire, “Telomere reduction in human colorectal carcinoma and with ageing,” Nature, vol. 346, no. 6287, pp. 866–868, 1990. View at Publisher · View at Google Scholar · View at Scopus
  226. M. Sugimoto, R. Yamashita, and M. Ueda, “Telomere length of the skin in association with chronological aging and photoaging,” Journal of Dermatological Science, vol. 43, no. 1, pp. 43–47, 2006. View at Publisher · View at Google Scholar · View at Scopus
  227. A. Melk, V. Ramassar, L. M. H. Helms et al., “Telomere shortening in kidneys with age,” Journal of the American Society of Nephrology, vol. 11, no. 3, pp. 444–453, 2000. View at Google Scholar · View at Scopus
  228. K. Takubo, K. I. Nakamura, N. Izumiyama et al., “Telomere shortening with aging in human liver,” The Journals of Gerontology Series A, vol. 55, no. 11, pp. B533–B536, 2000. View at Google Scholar · View at Scopus
  229. H. Aikata, H. Takaishi, Y. Kawakami et al., “Telomere reduction in human liver tissues with age and chronic inflammation,” Experimental Cell Research, vol. 256, no. 2, pp. 578–582, 2000. View at Publisher · View at Google Scholar · View at Scopus
  230. G. M. Baerlocher, I. Vulto, G. de Jong, and P. M. Lansdorp, “Flow cytometry and FISH to measure the average length of telomeres (flow FISH),” Nature Protocols, vol. 1, no. 5, pp. 2365–2376, 2006. View at Publisher · View at Google Scholar · View at Scopus
  231. A. Canela, E. Vera, P. Klatt, and M. A. Blasco, “High-throughput telomere length quantification by FISH and its application to human population studies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 13, pp. 5300–5305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  232. E. Chang and C. B. Harley, “Telomere length and replicative aging in human vascular tissues,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 24, pp. 11190–11194, 1995. View at Publisher · View at Google Scholar · View at Scopus
  233. M. Kimura, M. Barbieri, J. P. Gardner et al., “Leukocytes of exceptionally old persons display ultra-short telomeres,” American Journal of Physiology, vol. 293, no. 6, pp. R2210–R2217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  234. M. Kveiborg, M. Kassem, B. Langdahl, E. F. Eriksen, B. F. C. Clark, and S. I. S. Rattan, “Telomere shortening during aging of human osteoblasts in vitro and leukocytes in vivo: lack of excessive telomere loss in osteoporotic patients,” Mechanisms of Ageing and Development, vol. 106, no. 3, pp. 261–271, 1999. View at Publisher · View at Google Scholar · View at Scopus
  235. C. Mondello, C. Petropoulou, D. Monti, E. S. Gonos, C. Franceschi, and F. Nuzzo, “Telomere length in fibroblasts and blood cells from healthy centenarians,” Experimental Cell Research, vol. 248, no. 1, pp. 234–242, 1999. View at Publisher · View at Google Scholar · View at Scopus
  236. T. Kitada, S. Seki, N. Kawakita, T. Kuroki, and T. Monna, “Telomere shortening in chronic liver diseases,” Biochemical and Biophysical Research Communications, vol. 211, no. 1, pp. 33–39, 1995. View at Publisher · View at Google Scholar · View at Scopus
  237. N. Miura, I. Horikawa, A. Nishimoto et al., “Progressive telomere shortening and telomerase reactivation during hepatocellular carcinogenesis,” Cancer Genetics and Cytogenetics, vol. 93, no. 1, pp. 56–62, 1997. View at Publisher · View at Google Scholar · View at Scopus
  238. Y. Urabe, K. Nouso, T. Higashi et al., “Telomere length in human liver diseases,” Liver, vol. 16, no. 5, pp. 293–297, 1996. View at Google Scholar · View at Scopus
  239. S. E. Ball, F. M. Gibson, S. Rizzo, J. A. Tooze, J. C. W. Marsh, and E. C. Gordon-Smith, “Progressive telomere shortening in aplastic anemia,” Blood, vol. 91, no. 10, pp. 3582–3592, 1998. View at Google Scholar · View at Scopus
  240. N. J. Samani, R. Boultby, R. Butler, J. R. Thompson, and A. H. Goodall, “Telomere shortening in atherosclerosis,” The Lancet, vol. 358, no. 9280, pp. 472–473, 2001. View at Publisher · View at Google Scholar · View at Scopus
  241. N. Obana, S. Takagi, Y. Kinouchi et al., “Telomere shortening of peripheral blood mononuclear cells in coronary disease patients with metabolic disorders,” Internal Medicine, vol. 42, no. 2, pp. 150–153, 2003. View at Google Scholar · View at Scopus
  242. L. A. Panossian, V. R. Porter, H. F. Valenzuela et al., “Telomere shortening in T cells correlates with Alzheimer's disease status,” Neurobiology of Aging, vol. 24, no. 1, pp. 77–84, 2003. View at Publisher · View at Google Scholar · View at Scopus
  243. M. Ogami, Y. Ikura, M. Ohsawa et al., “Telomere shortening in human coronary artery diseases,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 3, pp. 546–550, 2004. View at Publisher · View at Google Scholar · View at Scopus
  244. E. S. Epel, E. H. Blackburn, J. Lin et al., “Accelerated telomere shortening in response to life stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 49, pp. 17312–17315, 2004. View at Publisher · View at Google Scholar · View at Scopus
  245. A. M. Valdes, T. Andrew, J. P. Gardner et al., “Obesity, cigarette smoking, and telomere length in women,” The Lancet, vol. 366, no. 9486, pp. 662–664, 2005. View at Publisher · View at Google Scholar · View at Scopus
  246. T. Vulliamy, A. Marrone, R. Szydlo, A. Walne, P. J. Mason, and I. Dokal, “Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC,” Nature Genetics, vol. 36, no. 5, pp. 447–449, 2004. View at Publisher · View at Google Scholar · View at Scopus
  247. T. Vulliamy, A. Marrone, F. Goldman et al., “The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita,” Nature, vol. 413, no. 6854, pp. 432–435, 2001. View at Publisher · View at Google Scholar · View at Scopus
  248. H. Yamaguchi, R. T. Calado, H. Ly et al., “Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia,” The New England Journal of Medicine, vol. 352, no. 14, pp. 1413–1424, 2005. View at Publisher · View at Google Scholar · View at Scopus
  249. H. W. Lee, M. A. Blasco, G. J. Gottlieb, J. W. Horner, C. W. Greider, and R. A. DePinho, “Essential role of mouse telomerase in highly proliferative organs,” Nature, vol. 392, no. 6676, pp. 569–574, 1998. View at Publisher · View at Google Scholar · View at Scopus
  250. L. Y. Hao, M. Armanios, M. A. Strong et al., “Short telomeres, even in the presence of telomerase, limit tissue renewal capacity,” Cell, vol. 123, no. 6, pp. 1121–1131, 2005. View at Publisher · View at Google Scholar · View at Scopus
  251. M. Jaskelioff, F. L. Muller, J.-H. Paik et al., “Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice,” Nature, vol. 469, no. 7328, pp. 102–107, 2011. View at Publisher · View at Google Scholar
  252. S. Chang, A. S. Multani, N. G. Cabrera et al., “Essential role of limiting telomeres in the pathogenesis of Werner syndrome,” Nature Genetics, vol. 36, no. 8, pp. 877–882, 2004. View at Publisher · View at Google Scholar · View at Scopus
  253. X. Du, J. Shen, N. Kugan et al., “Telomere shortening exposes functions for the mouse Werner and Bloom syndrome genes,” Molecular and Cellular Biology, vol. 24, no. 19, pp. 8437–8446, 2004. View at Publisher · View at Google Scholar · View at Scopus
  254. D. J. Rossi, C. H. M. Jamieson, and I. L. Weissman, “Stems cells and the pathways to aging and cancer,” Cell, vol. 132, no. 4, pp. 681–696, 2008. View at Publisher · View at Google Scholar · View at Scopus
  255. T. A. Rando, “Stem cells, ageing and the quest for immortality,” Nature, vol. 441, no. 7097, pp. 1080–1086, 2006. View at Publisher · View at Google Scholar · View at Scopus
  256. I. Beerman, W. J. Maloney, I. L. Weissmann, and D. J. Rossi, “Stem cells and the aging hematopoietic system,” Current Opinion in Immunology, vol. 22, no. 4, pp. 500–506, 2010. View at Publisher · View at Google Scholar
  257. S. Zimmermann, M. Voss, S. Kaiser, U. Kapp, C. F. Waller, and U. M. Martens, “Lack of telomerase activity in human mesenchymal stem cells,” Leukemia, vol. 17, no. 6, pp. 1146–1149, 2003. View at Publisher · View at Google Scholar · View at Scopus
  258. S. J. Morrison, K. R. Prowse, P. Ho, and I. L. Weissman, “Telomerase activity in hematopoietic cells is associated with self-renewal potential,” Immunity, vol. 5, no. 3, pp. 207–216, 1996. View at Publisher · View at Google Scholar · View at Scopus
  259. R. C. Allsopp, G. B. Morin, R. DePinho, C. B. Harley, and I. L. Weissman, “Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation,” Blood, vol. 102, no. 2, pp. 517–520, 2003. View at Publisher · View at Google Scholar · View at Scopus
  260. J. Yui, C. P. Chiu, and P. M. Lansdorp, “Telomerase activity in candidate stem cells from fetal liver and adult bone marrow,” Blood, vol. 91, no. 9, pp. 3255–3262, 1998. View at Google Scholar · View at Scopus
  261. R. C. Allsopp, S. Cheshier, and I. L. Weissman, “Telomere shortening accompanies increased cell cycle activity during serial transplantation of hematopoietic stem cells,” Journal of Experimental Medicine, vol. 193, no. 8, pp. 917–924, 2001. View at Publisher · View at Google Scholar · View at Scopus
  262. R. C. Allsopp and I. L. Weissman, “Replicative senescence of hematopoietic stem cells during serial transplantation: does telomere shortening play a role?” Oncogene, vol. 21, no. 21, pp. 3270–3273, 2002. View at Publisher · View at Google Scholar · View at Scopus
  263. H. Vaziri, W. Dragowska, R. C. Allsopp, T. E. Thomas, C. B. Harley, and P. M. Lansdorp, “Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 21, pp. 9857–9860, 1994. View at Publisher · View at Google Scholar · View at Scopus
  264. J. Krishnamurthy, C. Torrice, M. R. Ramsey et al., “Ink4a/Arf expression is a biomarker of aging,” Journal of Clinical Investigation, vol. 114, no. 9, pp. 1299–1307, 2004. View at Publisher · View at Google Scholar · View at Scopus
  265. A. B. Chkhotua, E. Gabusi, A. Altimari et al., “Increased expression of p16 and p27 cyclin-dependent kinase inhibitor genes in aging human kidney and chronic allograft nephropathy,” American Journal of Kidney Diseases, vol. 41, no. 6, pp. 1303–1313, 2003. View at Publisher · View at Google Scholar · View at Scopus
  266. S. Ressler, J. Bartkova, H. Niederegger et al., “p16INK4A is a robust in vivo biomarker of cellular aging in human skin,” Aging Cell, vol. 5, no. 5, pp. 379–389, 2006. View at Publisher · View at Google Scholar · View at Scopus
  267. G. P. Nielsen, A. O. Stemmer-Rachamimov, J. Shaw, J. E. Roy, J. Koh, and D. N. Louis, “Immunohistochemical survey of p16INK4A expression in normal human adult and infant tissues,” Laboratory Investigation, vol. 79, no. 9, pp. 1137–1143, 1999. View at Google Scholar · View at Scopus
  268. A. Melk, B. M. W. Schmidt, O. Takeuchi, B. Sawitzki, D. C. Rayner, and P. F. Halloran, “Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney,” Kidney International, vol. 65, no. 2, pp. 510–520, 2004. View at Publisher · View at Google Scholar
  269. H. Chen, X. Gu, I. H. Su et al., “Polycomb protein Ezh2 regulates pancreatic β-cell Ink4a/Arf expression and regeneration in diabetes mellitus,” Genes & Development, vol. 23, no. 8, pp. 975–985, 2009. View at Publisher · View at Google Scholar · View at Scopus
  270. F. Zindy, D. E. Quelle, M. F. Roussel, and C. J. Sherr, “Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging,” Oncogene, vol. 15, no. 2, pp. 203–211, 1997. View at Google Scholar · View at Scopus
  271. J. Krishnamurthy, M. R. Ramsey, K. L. Ligon et al., “p16INK4a induces an age-dependent decline in islet regenerative potential,” Nature, vol. 443, no. 7110, pp. 453–457, 2006. View at Publisher · View at Google Scholar · View at Scopus
  272. V. Janzen, R. Forkert, H. E. Fleming et al., “Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a,” Nature, vol. 443, no. 7110, pp. 421–426, 2006. View at Publisher · View at Google Scholar · View at Scopus
  273. A. V. Molofsky, S. G. Slutsky, N. M. Joseph et al., “Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing,” Nature, vol. 443, no. 7110, pp. 448–452, 2006. View at Publisher · View at Google Scholar · View at Scopus
  274. T. Cheng, N. Rodrigues, H. Shen et al., “Hematopoietic stem cell quiescence maintained by p21cip1/waf1,” Science, vol. 287, no. 5459, pp. 1804–1809, 2000. View at Publisher · View at Google Scholar · View at Scopus
  275. A. R. Choudhury, Z. Ju, M. W. Djojosubroto et al., “Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation,” Nature Genetics, vol. 39, no. 1, pp. 99–105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  276. Y. Liu, S. E. Elf, Y. Miyata et al., “p53 regulates hematopoietic stem cell quiescence,” Cell Stem Cell, vol. 4, no. 1, pp. 37–48, 2009. View at Publisher · View at Google Scholar · View at Scopus
  277. M. TeKippe, D. E. Harrison, and J. Chen, “Expansion of hematopoietic stem cell phenotype and activity in Trp53-null mice,” Experimental Hematology, vol. 31, no. 6, pp. 521–527, 2003. View at Publisher · View at Google Scholar · View at Scopus
  278. K. Meletis, V. Wirta, S. M. Hede, M. Nistér, J. Lundeberg, and J. Frisén, “p53 suppresses the self-renewal of adult neural stem cells,” Development, vol. 133, no. 2, pp. 363–369, 2006. View at Publisher · View at Google Scholar · View at Scopus
  279. S. D. Tyner, S. Venkatachalam, J. Choi et al., “p53 mutant mice that display early ageing-associated phenotypes,” Nature, vol. 415, no. 6867, pp. 45–53, 2002. View at Publisher · View at Google Scholar · View at Scopus
  280. B. Maier, W. Gluba, B. Bernier et al., “Modulation of mammalian life span by the short isoform of p53,” Genes & Development, vol. 18, no. 3, pp. 306–319, 2004. View at Publisher · View at Google Scholar · View at Scopus
  281. S. M. Chambers, C. A. Shaw, C. Gatza, C. J. Fisk, L. A. Donehower, and M. A. Goodell, “Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation,” PLoS Biology, vol. 5, no. 8, article e201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  282. M. Dumble, L. Moore, S. M. Chambers et al., “The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging,” Blood, vol. 109, no. 4, pp. 1736–1742, 2007. View at Publisher · View at Google Scholar · View at Scopus
  283. A. Matheu, A. Maraver, P. Klatt et al., “Delayed ageing through damage protection by the Arf/p53 pathway,” Nature, vol. 448, no. 7151, pp. 375–379, 2007. View at Publisher · View at Google Scholar · View at Scopus
  284. I. García-Cao, M. García-Cao, J. Martín-Caballero et al., “‘Super p53’ mice exhibit enhanced DNA damage response, are tumor resistant and age normally,” The EMBO Journal, vol. 21, no. 22, pp. 6225–6235, 2002. View at Publisher · View at Google Scholar · View at Scopus
  285. I. García-Cao, M. García-Cao, A. Tomás-Loba et al., “Increased p53 activity does not accelerate telomere-driven ageing,” EMBO Reports, vol. 7, no. 5, pp. 546–552, 2006. View at Publisher · View at Google Scholar · View at Scopus