Table of Contents Author Guidelines Submit a Manuscript
Journal of Aging Research
Volume 2011, Article ID 978761, 11 pages
http://dx.doi.org/10.4061/2011/978761
Review Article

Lessons from a Mouse Model Characterizing Features of Vascular Cognitive Impairment with White Matter Changes

1Department of Neurology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507, Japan
2Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan

Received 26 March 2011; Accepted 26 July 2011

Academic Editor: Sofia Madureira

Copyright © 2011 Masafumi Ihara and Hidekazu Tomimoto. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. C. Román, T. Erkinjuntti, A. Wallin, L. Pantoni, and H. C. Chui, “Subcortical ischaemic vascular dementia,” Lancet Neurology, vol. 1, no. 7, pp. 426–436, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Ihara, H. Tomimoto, K. Ishizu et al., “Decrease in cortical benzodiazepine receptors in symptomatic patients with leukoaraiosis: a positron emission tomography study,” Stroke, vol. 35, no. 4, pp. 942–947, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. K. A. Jellinger, “The enigma of vascular cognitive disorder and vascular dementia,” Acta Neuropathologica, vol. 113, no. 4, pp. 349–388, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Pantoni and J. H. Garcia, “The significance of cerebral white matter abnormalities 100 years after Binswanger's report: a review,” Stroke, vol. 26, no. 7, pp. 1293–1301, 1995. View at Google Scholar · View at Scopus
  5. K. Meguro, J. Hatazawa, T. Yamaguchi et al., “Cerebral circulation and oxygen metabolism associated with subclinical periventricular hyperintensity as shown by magnetic resonance imaging,” Annals of Neurology, vol. 28, no. 3, pp. 378–383, 1990. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Pantoni and J. H. Garcia, “Pathogenesis of leukoaraiosis: a review,” Stroke, vol. 28, no. 3, pp. 652–659, 1997. View at Google Scholar · View at Scopus
  7. P. Scheltens, F. Barkhof, and F. Fazekas, “White-matter changes on MRI as surrogate marker,” International Psychogeriatrics, vol. 15, supplement 1, pp. 261–265, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Yao, S. Sadoshima, Y. Kuwabara, Y. Ichiya, and M. Fujishima, “Cerebral blood flow and oxygen metabolism in patients with vascular dementia of the Binswanger type,” Stroke, vol. 21, no. 12, pp. 1694–1699, 1990. View at Google Scholar · View at Scopus
  9. H. Wakita, H. Tominoto, I. Akiguchi, and J. Kimura, “Glial activation and white matter changes in the rat brain induced by chronic cerebral hypoperfusion: an immunohistochemical study,” Acta Neuropathologica, vol. 87, no. 5, pp. 484–492, 1994. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Shibata, R. Ohtani, M. Ihara, and H. Tomimoto, “White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion,” Stroke, vol. 35, no. 11, pp. 2598–2603, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Kudo, K. Tada, M. Takeda, and T. Nishimura, “Learning impairment and microtubule-associated protein 2 decrease in gerbils under chronic cerebral hypoperfusion,” Stroke, vol. 21, no. 8, pp. 1205–1209, 1990. View at Google Scholar · View at Scopus
  12. E. Farkas, P. G. M. Luiten, and F. Bari, “Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases,” Brain Research Reviews, vol. 54, no. 1, pp. 162–180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Sarti, L. Pantoni, L. Bartolini, and D. Inzitari, “Persistent impairment of gait performances and working memory after bilateral common carotid artery occlusion in the adult Wistar rat,” Behavioural Brain Research, vol. 136, no. 1, pp. 13–20, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Murakami, Q. Zhao, K. Harada et al., “Choto-san, a Kampo formula, improves chronic cerebral hypoperfusion-induced spatial learning deficit via stimulation of muscarinic M1 receptor,” Pharmacology Biochemistry and Behavior, vol. 81, no. 3, pp. 616–625, 2005. View at Google Scholar
  15. K. Yoshizaki, K. Adachi, S. Kataoka et al., “Chronic cerebral hypoperfusion induced by right unilateral common carotid artery occlusion causes delayed white matter lesions and cognitive impairment in adult mice,” Experimental Neurology, vol. 210, no. 2, pp. 585–591, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. Stroke Therapy Academic Industry Roundtable (STAIR), “Recommendations for standards regarding preclinical neuroprotective and restorative drug development,” Stroke, vol. 30, no. 12, pp. 2752–2758, 1999. View at Google Scholar · View at Scopus
  17. J. W. Ni, K. Matsumoto, H. B. Li, Y. Murakami, and H. Watanabe, “Neuronal damage and decrease of central acetylcholine level following permanent occlusion of bilateral common carotid arteries in rat,” Brain Research, vol. 673, no. 2, pp. 290–296, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. N. S. Jiwa, P. Garrard, and A. H. Hainsworth, “Experimental models of vascular dementia and vascular cognitive impairment: a systematic review,” Journal of Neurochemistry, vol. 115, no. 4, pp. 814–828, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Hattori, M. Takeda, T. Kudo, T. Nishimura, and S. Hashimoto, “Cumulative white matter changes in the gerbil brain under chronic cerebral hypoperfusion,” Acta Neuropathologica, vol. 84, no. 4, pp. 437–442, 1992. View at Google Scholar · View at Scopus
  20. M. Shibata, N. Yamasaki, T. Miyakawa et al., “Selective impairment of working memory in a mouse model of chronic cerebral hypoperfusion,” Stroke, vol. 38, no. 10, pp. 2826–2832, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Nakaji, M. Ihara, C. Takahashi et al., “Matrix metalloproteinase-2 plays a critical role in the pathogenesis of white matter lesions after chronic cerebral hypoperfusion in rodents,” Stroke, vol. 37, no. 11, pp. 2816–2823, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Miki, S. Ishibashi, L. Sun et al., “Intensity of chronic cerebral hypoperfusion determines white/gray matter injury and cognitive/motor dysfunction in mice,” Journal of Neuroscience Research, vol. 87, no. 5, pp. 1270–1281, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Duan, L. Gui, Z. Zhou et al., “Adenosine A2A receptor deficiency exacerbates white matter lesions and cognitive deficits induced by chronic cerebral hypoperfusion in mice,” Journal of the Neurological Sciences, vol. 285, no. 1-2, pp. 39–45, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Schifilliti, G. Grasso, A. Conti, and V. Fodale, “Anaesthetic-related neuroprotection: intravenous or inhalational agents?” CNS Drugs, vol. 24, no. 11, pp. 893–907, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Kelly, J. McCulloch, and K. Horsburgh, “Minimal ischaemic neuronal damage and HSP70 expression in MF1 strain mice following bilateral common carotid artery occlusion,” Brain Research, vol. 914, no. 1-2, pp. 185–195, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Nishio, M. Ihara, N. Yamasaki et al., “A mouse model characterizing features of vascular dementia with hippocampal atrophy,” Stroke, vol. 41, no. 6, pp. 1278–1284, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Dorr, J. G. Sled, and N. Kabani, “Three-dimensional cerebral vasculature of the CBA mouse brain: a magnetic resonance imaging and micro computed tomography study,” NeuroImage, vol. 35, no. 4, pp. 1409–1423, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. I. Akiguchi, H. Tomimoto, T. Suenaga, H. Wakita, and H. Budka, “Blood-brain barrier dysfunction in Binswanger's disease; an immunohistochemical study,” Acta Neuropathologica, vol. 95, no. 1, pp. 78–84, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Akiguchi, H. Tomimoto, T. Suenaga, H. Wakita, and H. Budka, “Alterations in glia and axons in the brains of Binswanger's disease patients,” Stroke, vol. 28, no. 7, pp. 1423–1429, 1997. View at Google Scholar · View at Scopus
  30. H. Wakita, H. Tomimoto, I. Akiguchi, and J. Kimura, “Dose-dependent, protective effect of FK506 against white matter changes in the rat brain after chronic cerebral ischemia,” Brain Research, vol. 792, no. 1, pp. 105–113, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Wakita, H. Tomimoto, I. Akiguchi, J. Kimura, and J. A. Clemens, “Protective effect of cyclosporin A on white matter changes in the rat brain after chronic cerebral hypoperfusion,” Stroke, vol. 26, no. 8, pp. 1415–1422, 1995. View at Google Scholar · View at Scopus
  32. G. A. Rosenberg, M. Kornfeld, E. Estrada, R. O. Kelley, L. A. Liotta, and W. G. Stetler-Stevenson, “TIMP-2 reduces proteolytic opening of blood-brain barrier by type IV collagenase,” Brain Research, vol. 576, no. 2, pp. 203–207, 1992. View at Publisher · View at Google Scholar · View at Scopus
  33. G. F. Hamann, Y. Okada, R. Fitridge, G. J. Del Zoppo, and J. T. Povlishock, “Microvascular basal lamina antigens disappear during cerebral ischemia and reperfusion,” Stroke, vol. 26, no. 11, pp. 2120–2126, 1995. View at Google Scholar · View at Scopus
  34. A. M. Romanic and J. A. Madri, “The induction of 72-kD gelatinase in T cells upon adhesion to endothelial cells is VCAM-1 dependent,” Journal of Cell Biology, vol. 125, no. 5, pp. 1165–1178, 1994. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Chandler, R. Coates, A. Gearing, J. Lury, G. Wells, and E. Bone, “Matrix metalloproteinases degrade myelin basic protein,” Neuroscience Letters, vol. 201, no. 3, pp. 223–226, 1995. View at Publisher · View at Google Scholar · View at Scopus
  36. E. J. Walker and G. A. Rosenberg, “Divergent role for MMP-2 in myelin breakdown and oligodendrocyte death following transient global ischemia,” Journal of Neuroscience Research, vol. 88, no. 4, pp. 764–773, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Ihara, H. Tomimoto, M. Kinoshita et al., “Chronic cerebral hypoperfusion induces MMP-2 but not MMP-9 expression in the microglia and vascular endothelium of white matter,” Journal of Cerebral Blood Flow and Metabolism, vol. 21, no. 7, pp. 828–834, 2001. View at Google Scholar · View at Scopus
  38. M. Ueno, H. Tomimoto, I. Akiguchi, H. Wakita, and H. Sakamoto, “Blood-brain barrier disruption in white matter lesions in a rat model of chronic cerebral hypoperfusion,” Journal of Cerebral Blood Flow and Metabolism, vol. 22, no. 1, pp. 97–104, 2002. View at Google Scholar · View at Scopus
  39. G. A. Rosenberg, N. Sullivan, and M. M. Esiri, “White matter damage is associated with matrix metalloproteinases in vascular dementia,” Stroke, vol. 32, no. 5, pp. 1162–1167, 2001. View at Google Scholar · View at Scopus
  40. L. R. Caplan, “Dilatative arteriopathy (dolichoectasia): what is known and not known,” Annals of Neurology, vol. 57, no. 4, pp. 469–471, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Washida, M. Ihara, K. Nishio et al., “Nonhypotensive dose of telmisartan attenuates cognitive impairment partially due to peroxisome proliferator-activated receptor-γ activation in mice with chronic cerebral hypoperfusion,” Stroke, vol. 41, no. 8, pp. 1798–1806, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Coltman, A. Spain, Y. Tsenkina et al., “Selective white matter pathology induces a specific impairment in spatial working memory,” Neurobiology of Aging, vol. 32, no. 12, pp. 2324 e7–2324 e12, 2011. View at Publisher · View at Google Scholar
  43. T. Maki, M. Ihara, Y. Fujita et al., “Angiogenic and vasoprotective effects of adrenomedullin on prevention of cognitive decline after chronic cerebral hypoperfusion in mice,” Stroke, vol. 42, no. 4, pp. 1122–1128, 2011. View at Google Scholar
  44. P. R. Holland, M. E. Bastin, M. A. Jansen et al., “MRI is a sensitive marker of subtle white matter pathology in hypoperfused mice,” Neurobiology of Aging, vol. 32, no. 12, pp. 2325 e1–2325 e6, 2011. View at Publisher · View at Google Scholar
  45. R. Sood, Y. Yang, S. Taheri et al., “Increased apparent diffusion coefficients on MRI linked with matrix metalloproteinases and edema in white matter after bilateral carotid artery occlusion in rats,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 2, pp. 308–316, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Ohta, H. Nishikawa, H. Kimura, H. Anayama, and M. Miyamoto, “Chronic cerebral hypoperfusion by permanent internal carotid ligation produces learning impairment without brain damage in rats,” Neuroscience, vol. 79, no. 4, pp. 1039–1050, 1997. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Funahashi, C. J. Bruce, and P. S. Goldman-Rakic, “Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex,” Journal of Neurophysiology, vol. 61, no. 2, pp. 331–349, 1989. View at Google Scholar · View at Scopus
  48. C. W. Nordahl, C. Ranganath, A. P. Yonelinas, C. DeCarli, E. Fletcher, and W. J. Jagust, “White matter changes compromise prefrontal cortex function in healthy elderly individuals,” Journal of Cognitive Neuroscience, vol. 18, no. 3, pp. 418–429, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. E. J. Burton, R. A. Kenny, J. O'Brien et al., “White matter hyperintensities are associated with impairment of memory, attention, and global cognitive performance in older stroke patients,” Stroke, vol. 35, no. 6, pp. 1270–1275, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. F. E. De Leeuw, F. Barkhof, and P. Scheltens, “White matter lesions and hippocampal atrophy in Alzheimer's disease,” Neurology, vol. 62, no. 2, pp. 310–312, 2004. View at Google Scholar · View at Scopus
  51. M. M. Esiri, R. C. A. Pearson, J. E. Steele, D. M. Bowen, and T. P. S. Powell, “A quantitative study of the neurofibrillary tangles and the choline acetyltransferase activity in the cerebral cortex and the amygdala in Alzheimer's disease,” Journal of Neurology Neurosurgery and Psychiatry, vol. 53, no. 2, pp. 161–165, 1990. View at Google Scholar · View at Scopus
  52. R. Kalaria, “Similarities between Alzheimer's disease and vascular dementia,” Journal of the Neurological Sciences, vol. 203-204, pp. 29–34, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Sjobeck and E. Englund, “Glial levels determine severity of white matter disease in Alzheimer's disease: a neuropathological study of glial changes,” Neuropathology and Applied Neurobiology, vol. 29, no. 2, pp. 159–169, 2003. View at Google Scholar
  54. M. J. Firbank, T. Minett, and J. T. O'Brien, “Changes in DWI and MRS associated with white matter hyperintensities in elderly subjects,” Neurology, vol. 61, no. 7, pp. 950–954, 2003. View at Google Scholar · View at Scopus
  55. E. Richard, A. A. Gouw, P. Scheltens, and W. A. Van Gool, “Vascular care in patients with Alzheimer disease with cerebrovascular lesions slows progression of white matter lesions on MRI: the evaluation of vascular care in Alzheimer's disease (EVA) study,” Stroke, vol. 41, no. 3, pp. 554–556, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Ihara, T. M. Polvikoski, R. Hall et al., “Quantification of myelin loss in frontal lobe white matter in vascular dementia, Alzheimer's disease, and dementia with Lewy bodies,” Acta Neuropathologica, vol. 119, no. 5, pp. 579–589, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Ihara and R. N. Kalaria, “Amyloid-β and synaptic activity in mice and men,” NeuroReport, vol. 18, no. 12, pp. 1205–1206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. R. N. Kalaria, “The role of cerebral ischemia in Alzheimer's disease,” Neurobiology of Aging, vol. 21, no. 2, pp. 321–330, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. R. N. Kalaria and C. Ballard, “Overlap between pathology of Alzheimer disease and vascular dementia,” Alzheimer Disease and Associated Disorders, vol. 13, no. 3, pp. S115–S123, 1999. View at Google Scholar · View at Scopus
  60. H. Kitaguchi, H. Tomimoto, M. Ihara et al., “Chronic cerebral hypoperfusion accelerates amyloid β deposition in APPSwInd transgenic mice,” Brain Research, vol. 1294, pp. 202–210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Yamada, M. Ihara, Y. Okamoto et al., “The influence of chronic cerebral hypoperfusion on cognitive function and amyloid beta metabolism in APP overexpressing mice,” PLoS ONE, vol. 6, no. 1, article e16567, 2011. View at Google Scholar
  62. G. Bartzokis, “Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer's disease,” Neurobiology of Aging, vol. 25, no. 1, pp. 5–18, 2004. View at Google Scholar
  63. B. B. Fredholm, R. A. Cunha, and P. Svenningsson, “Pharmacology of adenosine A2A receptors and therapeutic applications,” Current Topics in Medicinal Chemistry, vol. 3, no. 4, pp. 413–426, 2003. View at Google Scholar · View at Scopus
  64. J. F. Chen, Z. Huang, J. Ma et al., “A(2A) adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice,” Journal of Neuroscience, vol. 19, no. 21, pp. 9192–9200, 1999. View at Google Scholar · View at Scopus
  65. J. W. Phillis, “The effects of selective A1 and A(2a) adenosine receptor antagonists on cerebral ischemic injury in the gerbil,” Brain Research, vol. 705, no. 1-2, pp. 79–84, 1995. View at Publisher · View at Google Scholar · View at Scopus
  66. U. Aden, L. Halldner, H. Lagercrantz, I. Dalmau, C. Ledent, and B. B. Fredholm, “Aggravated brain damage after hypoxic ischemia in immature adenosine A2A knockout mice,” Stroke, vol. 34, no. 3, pp. 739–744, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. C. Tzourio, C. Anderson, N. Chapman et al., “Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease,” Archives of Internal Medicine, vol. 163, no. 9, pp. 1069–1075, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. B. K. Saxby, F. Harrington, K. A. Wesnes, I. G. McKeith, and G. A. Ford, “Candesartan and cognitive decline in older patients with hypertension: a substudy of the SCOPE trial,” Neurology, vol. 70, no. 19, pp. 1858–1866, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. N. C. Li, A. Lee, R. A. Whitmer et al., “Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis,” British Medical Journal, vol. 340, p. b5465, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Ohno, Y. Amano, H. Kakuta et al., “Unique “delta lock” structure of telmisartan is involved in its strongest binding affinity to angiotensin II type 1 receptor,” Biochemical and Biophysical Research Communications, vol. 404, no. 1, pp. 434–437, 2010. View at Google Scholar
  71. S. C. Benson, H. A. Pershadsingh, C. I. Ho et al., “Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARγ-modulating activity,” Hypertension, vol. 43, no. 5, pp. 993–1002, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Kitamura, K. Kangawa, M. Kawamoto et al., “Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma,” Biochemical and Biophysical Research Communications, vol. 192, no. 2, pp. 553–560, 1993. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Kato, T. Tsuruda, T. Kita, K. Kitamura, and T. Eto, “Adrenomedullin: a protective factor for blood vessels,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 12, pp. 2480–2487, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. N. Miyamoto, R. Tanaka, T. Shimosawa et al., “Protein kinase A-dependent suppression of reactive oxygen species in transient focal ischemia in adrenomedullin-deficient mice,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 11, pp. 1769–1779, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. T. Kondoh, Y. Ueta, and K. Torii, “Pre-treatment of adrenomedullin suppresses cerebral edema caused by transient focal cerebral ischemia in rats detected by magnetic resonance imaging,” Brain Research Bulletin, vol. 84, no. 1, pp. 69–74, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Chopp, Y. Li, and Z. G. Zhang, “Mechanisms underlying improved recovery of neurological function after stroke in the rodent after treatment with neurorestorative cell-based therapies,” Stroke, vol. 40, no. 3, pp. S143–S145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. D. You, L. Waeckel, T. G. Ebrahimian et al., “Increase in vascular permeability and vasodilation are critical for proangiogenic effects of stem cell therapy,” Circulation, vol. 114, no. 4, pp. 328–338, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. Fujita, M. Ihara, T. Ushiki et al., “Early protective effect of bone marrow mononuclear cells against ischemic white matter damage through augmentation of cerebral blood flow,” Stroke, vol. 41, no. 12, pp. 2938–2943, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Fisher, “Pericyte signaling in the neurovascular unit,” Stroke, vol. 40, no. 3, pp. S13–S15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Zhang, Y. Li, X. Zheng et al., “Bone marrow stromal cells protect oligodendrocytes from oxygen-glucose deprivation injury,” Journal of Neuroscience Research, vol. 86, no. 7, pp. 1501–1510, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. K. Arai and E. H. Lo, “An oligovascular niche: cerebral endothelial cells promote the survival and proliferation of oligodendrocyte precursor cells,” Journal of Neuroscience, vol. 29, no. 14, pp. 4351–4355, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. K. Arai and E. H. Lo, “Oligovascular signaling in white matter stroke,” Biological and Pharmaceutical Bulletin, vol. 32, no. 10, pp. 1639–1644, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. C. Iadecola and M. Nedergaard, “Glial regulation of the cerebral microvasculature,” Nature Neuroscience, vol. 10, no. 11, pp. 1369–1376, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. A. H. Hainsworth and H. S. Markus, “Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 12, pp. 1877–1891, 2008. View at Publisher · View at Google Scholar · View at Scopus