Table of Contents Author Guidelines Submit a Manuscript
Journal of Aging Research
Volume 2012 (2012), Article ID 436251, 5 pages
http://dx.doi.org/10.1155/2012/436251
Review Article

Apathy as Marker of Frail Status

1Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma “Tor Vergata”, Via Montpellier, 00133 Rome, Italy
2IRCCS Santa Lucia, Via Ardeatina, 00179 Rome, Italy

Received 15 July 2011; Accepted 15 November 2011

Academic Editor: John Knight

Copyright © 2012 Roberta Semprini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. B. Mitnitski, A. J. Mogilner, and K. Rockwood, “Accumulation of deficits as a proxy measure of aging,” The Scientific World Journal, vol. 1, pp. 323–336, 2001. View at Google Scholar
  2. T. B. L. Kirkwood, “Time of our lives. What controls the length of life?” EMBO Reports, vol. 6, supplement 1, pp. S4–S8, 2005. View at Publisher · View at Google Scholar · View at PubMed
  3. T. Fulop, A. Larbi, J. M. Witkowski et al., “Aging, frailty and age-related diseases,” Biogerontology, vol. 11, no. 5, pp. 547–563, 2010. View at Publisher · View at Google Scholar · View at PubMed
  4. P. O. Lang, J. P. Michel, and D. Zekry, “Frailty syndrome: a transitional state in a dynamic process,” Gerontology, vol. 55, no. 5, pp. 539–549, 2009. View at Publisher · View at Google Scholar · View at PubMed
  5. H. Bergman, L. Ferrucci, J. Guralnik et al., “Frailty: an emerging research and clinical paradigm—issues and controversies,” Journals of Gerontology A, vol. 62, no. 7, pp. 731–737, 2007. View at Google Scholar · View at Scopus
  6. F. E. Yates, “Complexity of a human being: changes with age,” Neurobiology of Aging, vol. 23, no. 1, pp. 17–19, 2002. View at Publisher · View at Google Scholar
  7. L. A. Lipsitz, “Physiological complexity, aging, and the path to frailty,” Science of Aging Knowledge Environment, vol. 2004, no. 16, article pe16, 2004. View at Google Scholar
  8. C. A. Depp and D. V. Jeste, “Definitions and predictors of successful aging: A comprehensive review of larger quantitative studies,” American Journal of Geriatric Psychiatry, vol. 14, no. 1, pp. 6–20, 2006. View at Publisher · View at Google Scholar · View at PubMed
  9. E. L. Glisky, “Changes in cognitive function in human aging,” in Brain Aging: Models, Methods, and Mechanisms, D. R. Riddle, Ed., Frontiers in Neuroscience, chapter 1, CRC Press, Boca Raton, Fla, USA, 2007. View at Google Scholar
  10. D. J. Gunnell, M. Okasha, G. D. Smith, S. E. Oliver, J. Sandhu, and J. M. P. Holly, “Gender gap in longevity and disability in older persons,” Epidemiologic Reviews, vol. 23, no. 2, pp. 343–350, 2001. View at Google Scholar
  11. L. P. Fried, “Establishing benchmarks for quality care for an aging population: caring for vulnerable older adults,” Annals of Internal Medicine, vol. 139, no. 9, pp. 784–786, 2003. View at Google Scholar
  12. R. Klein, B. E. K. Klein, and M. D. Knudtson, “Frailty and age-related macular degeneration: the beaver dam eye study,” American Journal of Ophthalmology, vol. 140, no. 1, pp. 129–131, 2005. View at Publisher · View at Google Scholar · View at PubMed
  13. K. Bandeen-Roche, Q. L. Xue, L. Ferrucci et al., “Phenotype of frailty: characterization in the Women's Health and Aging Studies,” Journals of Gerontology A, vol. 61, no. 3, pp. 262–266, 2006. View at Google Scholar
  14. M. D. Rothman, L. Leo-Summers, and T. M. Gill, “Prognostic significance of potential frailty criteria,” Journal of the American Geriatrics Society, vol. 56, no. 12, pp. 2211–2216, 2008. View at Publisher · View at Google Scholar · View at PubMed
  15. J. K. Johnson, L. Y. Lui, and K. Yaffe, “Executive function, more than global cognition, predicts functional decline and mortality in elderly women,” Journals of Gerontology A, vol. 62, no. 10, pp. 1134–1141, 2007. View at Google Scholar
  16. F. Malouin, C. L. Richards, and A. Durand, “Normal aging and motor imagery vividness: implications for mental practice training in rehabilitation,” Archives of Physical Medicine and Rehabilitation, vol. 91, no. 7, pp. 1122–1127, 2010. View at Publisher · View at Google Scholar · View at PubMed
  17. J. R. Hollerman, L. Tremblay, and W. Schultz, “Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior,” Progress in Brain Research, vol. 126, pp. 193–215, 2000. View at Publisher · View at Google Scholar
  18. V. Elderkin-Thompson, G. Hellemann, D. Pham, and A. Kumar, “Prefrontal brain morphology and executive function in healthy and depressed elderly,” International Journal of Geriatric Psychiatry, vol. 24, no. 5, pp. 459–468, 2009. View at Publisher · View at Google Scholar · View at PubMed
  19. S. N. Haber and J. L. Fudge, “The primate substantia nigra and VTA: integrative circuitry and function,” Critical Reviews in Neurobiology, vol. 11, no. 4, pp. 323–342, 1997. View at Google Scholar
  20. S. Tekin and J. L. Cummings, “Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update,” Journal of Psychosomatic Research, vol. 53, no. 2, pp. 647–654, 2002. View at Publisher · View at Google Scholar
  21. D. M. Haluk and S. B. Floresco, “Ventral striatal dopamine modulation of different forms of behavioral flexibility,” Neuropsychopharmacology, vol. 34, no. 8, pp. 2041–2052, 2009. View at Publisher · View at Google Scholar · View at PubMed
  22. S. B. Floresco and O. Magyar, “Mesocortical dopamine modulation of executive functions: beyond working memory,” Psychopharmacology, vol. 188, no. 4, pp. 567–585, 2006. View at Publisher · View at Google Scholar · View at PubMed
  23. S. B. Floresco, O. Magyar, S. Ghods-Sharifi, C. Vexelman, and M. T. L. Tse, “Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting,” Neuropsychopharmacology, vol. 31, no. 2, pp. 297–309, 2006. View at Publisher · View at Google Scholar · View at PubMed
  24. Y. Braw, S. Aviram, Y. Bloch, and Y. Levkovitz, “The effect of age on frontal lobe related cognitive functions of unmedicated depressed patients,” Journal of Affective Disorders, vol. 129, no. 1–3, pp. 342–347, 2011. View at Publisher · View at Google Scholar · View at PubMed
  25. G. Allali, F. Assal, R. W. Kressig, V. Dubost, F. R. Herrmann, and O. Beauchet, “Impact of impaired executive function on gait stability,” Dementia and Geriatric Cognitive Disorders, vol. 26, no. 4, pp. 364–369, 2008. View at Publisher · View at Google Scholar · View at PubMed
  26. E. C. Klostermann, M. N. Braskie, S. M. Landau, J. P. O'Neil, and W. J. Jagust, “Dopamine and frontostriatal networks in cognitive aging,” Neurobiology of Aging. In press. View at Publisher · View at Google Scholar · View at PubMed
  27. R. Levy and B. Dubois, “Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits,” Cerebral Cortex, vol. 16, no. 7, pp. 916–928, 2006. View at Publisher · View at Google Scholar · View at PubMed
  28. R. S. Marin, S. Firinciogullari, and R. C. Biedrzycki, “The sources of convergence between measures of apathy and depression,” Journal of Affective Disorders, vol. 28, no. 2, pp. 117–124, 1993. View at Publisher · View at Google Scholar
  29. R. S. Marin, S. Firinciogullari, and R. C. Biedrzycki, “Group differences in the relationship between apathy and depression,” Journal of Nervous and Mental Disease, vol. 182, no. 4, pp. 235–239, 1994. View at Google Scholar
  30. M. Amalric and G. F. Koob, “Functionally selective neurochemical afferents and efferents of the mesocorticolimbic and nigrostriatal dopamine system,” Progress in Brain Research, vol. 99, pp. 209–226, 1993. View at Google Scholar
  31. S. N. Haber, K. Kunishio, M. Mizobuchi, and E. Lynd-Balta, “The orbital and medial prefrontal circuit through the primate basal ganglia,” Journal of Neuroscience, vol. 15, no. 7, pp. 4851–4867, 1995. View at Google Scholar
  32. S. N. Haber and B. Knutson, “The reward circuit: Linking primate anatomy and human imaging,” Neuropsychopharmacology, vol. 35, no. 1, pp. 4–26, 2010. View at Publisher · View at Google Scholar · View at PubMed
  33. J. L. Cummings, “Frontal-subcortical circuits and human behavior,” Archives of Neurology, vol. 50, no. 8, pp. 873–880, 1993. View at Google Scholar
  34. R. S. Marin, B. S. Fogel, J. Hawkins, J. Duffy, and B. Krupp, “Apathy: a treatable syndrome,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 7, no. 1, pp. 23–30, 1995. View at Google Scholar
  35. P. R. Hof and J. H. Morrison, “The aging brain: morphomolecular senescence of cortical circuits,” Trends in Neurosciences, vol. 27, no. 10, pp. 607–613, 2004. View at Publisher · View at Google Scholar · View at PubMed
  36. Z. Petanjek, M. Judaš, I. Kostović, and H. B. M. Uylings, “Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: a layer-specific pattern,” Cerebral Cortex, vol. 18, no. 4, pp. 915–929, 2008. View at Publisher · View at Google Scholar · View at PubMed
  37. E. B. Bloss, W. G. Janssen, B. S. McEwen, and J. H. Morrison, “Interactive effects of stress and aging on structural plasticity in the prefrontal cortex,” Journal of Neuroscience, vol. 30, no. 19, pp. 6726–6731, 2010. View at Publisher · View at Google Scholar · View at PubMed
  38. J. M. Juraska and N. C. Lowry, “Neuroanatomical changes associated with cognitive aging,” Current Topics in Behavioral Neurosciences. In press.
  39. G. Kalpouzos, J. Persson, and L. Nyberg, “Local brain atrophy accounts for functional activity differences in normal aging,” Neurobiology of Aging, vol. 33, no. 3, pp. 623.e1–623.e13, 2012. View at Google Scholar
  40. K. H. Chen, E. A. Reese, H. W. Kim, S. I. Rapoport, and J. S. Rao, “Disturbed neurotransmitter transporter expression in Alzheimer's disease brain,” Journal of Alzheimer's disease, vol. 26, no. 4, pp. 755–766, 2011. View at Google Scholar
  41. T. H. McNeill, L. L. Koek, and J. W. Haycock, “The nigrostriatal system and aging,” Peptides, vol. 5, no. 1, pp. 263–268, 1984. View at Publisher · View at Google Scholar
  42. N. D. Volkow, J. S. Fowler, G. J. Wang et al., “Decreased dopamine transporters with age in health human subjects,” Annals of Neurology, vol. 36, no. 2, pp. 237–239, 1994. View at Google Scholar
  43. K. Ishibashi, K. Ishibashi, K. Ishii et al., “Regional analysis of age-related decline in dopamine transporters and dopamine D2-like receptors in human striatum,” Synapse, vol. 63, no. 4, pp. 282–290, 2009. View at Google Scholar
  44. L. Bäckman, U. Lindenberger, S. C. Li, and L. Nyberg, “Linking cognitive aging to alterations in dopamine neurotransmitter functioning: recent data and future avenues,” Neuroscience and Biobehavioral Reviews, vol. 34, no. 5, pp. 670–677, 2010. View at Publisher · View at Google Scholar · View at PubMed
  45. K. Mizoguchi, H. Shoji, Y. Tanaka, W. Maruyama, and T. Tabira, “Age-related spatial working memory impairment is caused by prefrontal cortical dopaminergic dysfunction in rats,” Neuroscience, vol. 162, no. 4, pp. 1192–1201, 2009. View at Publisher · View at Google Scholar · View at PubMed
  46. J. C. Dreher, A. Meyer-Lindenberg, P. Kohn, and K. F. Berman, “Age-related changes in midbrain dopaminergic regulation of the human reward system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 39, pp. 15106–15111, 2008. View at Publisher · View at Google Scholar · View at PubMed
  47. T. M. Gill, P. J. Castaneda, and P. H. Janak, “Dissociable roles of the medial prefrontal cortex and nucleus accumbens core in goal-directed actions for differential reward magnitude,” Cerebral Cortex, vol. 20, no. 12, pp. 2884–2899, 2010. View at Publisher · View at Google Scholar · View at PubMed
  48. H. Brodaty, A. Altendorf, A. Withall, and P. Sachdev, “Do people become more apathetic as they grow older? A longitudinal study in healthy individuals,” International Psychogeriatrics, vol. 22, no. 3, pp. 426–436, 2010. View at Publisher · View at Google Scholar · View at PubMed
  49. C. U. Onyike, J. M. E. Sheppard, J. T. Tschanz et al., “Epidemiology of apathy in older adults: the cache county study,” American Journal of Geriatric Psychiatry, vol. 15, no. 5, pp. 365–375, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. Y. E. Geda, R. O. Roberts, D. S. Knopman et al., “Prevalence of neuropsychiatric symptoms in mild cognitive impairment and normal cognitive aging: population-based study,” Archives of General Psychiatry, vol. 65, no. 10, pp. 1193–1198, 2008. View at Publisher · View at Google Scholar · View at PubMed
  51. D. Seitz, N. Purandare, and D. Conn, “Prevalence of psychiatric disorders among older adults in long-term care homes: a systematic review,” International Psychogeriatrics, vol. 22, no. 7, pp. 1025–1039, 2010. View at Publisher · View at Google Scholar · View at PubMed
  52. T. Okura, B. L. Plassman, D. C. Steffens, D. J. Llewellyn, G. G. Potter, and K. M. Langa, “Prevalence of neuropsychiatric symptoms and their association with functional limitations in older adults in the United States: The aging, demographics, and memory study,” Journal of the American Geriatrics Society, vol. 58, no. 2, pp. 330–337, 2010. View at Publisher · View at Google Scholar · View at PubMed
  53. C. De Jager, A. D. Blackwell, M. M. Budge, and B. J. Sahakian, “Predicting cognitive decline in healthy older adults,” American Journal of Geriatric Psychiatry, vol. 13, no. 8, pp. 735–740, 2005. View at Publisher · View at Google Scholar · View at PubMed
  54. D. A. Cahn-Weiner, P. F. Malloy, P. A. Boyle, M. Marran, and S. Salloway, “Prediction of functional status from neuropsychological tests in community-dwelling elderly individuals,” Clinical Neuropsychologist, vol. 14, no. 2, pp. 187–195, 2000. View at Google Scholar
  55. S. Borson, “Cognition, aging, and disabilities: conceptual issues,” Physical Medicine and Rehabilitation Clinics of North America, vol. 21, no. 2, pp. 375–382, 2010. View at Publisher · View at Google Scholar · View at PubMed