Table of Contents Author Guidelines Submit a Manuscript
Journal of Aging Research
Volume 2012, Article ID 754739, 12 pages
http://dx.doi.org/10.1155/2012/754739
Review Article

Sarcopenia: A Major Challenge in Elderly Patients with End-Stage Renal Disease

Department of Nephrology, Transplantation and Internal Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland

Received 1 August 2011; Revised 22 November 2011; Accepted 30 December 2011

Academic Editor: Stéphane Michel Schneider

Copyright © 2012 Maciej Domański and Kazimierz Ciechanowski. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Cheema, H. Abas, B. Smith et al., “Investigation of skeletal muscle quantity and quality in end-stage renal disease: original article,” Nephrology, vol. 15, no. 4, pp. 454–463, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. B. H. Goodpaster, S. W. Park, T. B. Harris et al., “The loss of skeletal muscle strength, mass, and quality in older adults: the Health, Aging and Body Composition Study,” Journals of Gerontology A, vol. 61, no. 10, pp. 1059–1064, 2006. View at Google Scholar · View at Scopus
  3. M. A. Fiatarone, E. C. Marks, N. D. Ryan, C. N. Meredith, L. A. Lipsitz, and W. J. Evans, “High-intensity strength training in nonagenarians. Effects on skeletal muscle,” Journal of the American Medical Association, vol. 263, no. 22, pp. 3029–3034, 1990. View at Google Scholar
  4. J. J. Carrero, M. Chmielewski, J. Axelsson et al., “Muscle atrophy, inflammation and clinical outcome in incident and prevalent dialysis patients,” Clinical Nutrition, vol. 27, no. 4, pp. 557–564, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. K. Kalantar-Zadeh, T. A. Ikizler, G. Block, M. M. Avram, and J. D. Kopple, “Malnutrition-inflammation complex syndrome in dialysis patients: causes and consequences,” American Journal of Kidney Diseases, vol. 42, no. 5, pp. 864–881, 2003. View at Google Scholar · View at Scopus
  6. A. R. Qureshi, A. Alvestrand, A. Danielsson et al., “Factors predicting malnutrition in hemodialysis patients: a cross- sectional study,” Kidney International, vol. 53, no. 3, pp. 773–782, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. R. H. Mak, A. T. Ikizler, C. P. Kovesdy, D. S. Raj, P. Stenvinkel, and K. Kalantar-Zadeh, “Wasting in chronic kidney disease,” The Journal of Cachexia, Sarcopenia and Muscle, vol. 2, no. 1, pp. 9–25, 2011. View at Google Scholar
  8. K. Kalantar-Zadeh, K. C. Abbott, A. K. Salahudeen, R. D. Kilpatrick, and T. B. Horwich, “Survival advantages of obesity in dialysis patients,” American Journal of Clinical Nutrition, vol. 81, no. 3, pp. 543–554, 2005. View at Google Scholar · View at Scopus
  9. S. F. Leavey, R. L. Strawderman, C. A. Jones, F. K. Port, and P. J. Held, “Simple nutritional indicators as independent predictors of mortality in hemodialysis patients,” American Journal of Kidney Diseases, vol. 31, no. 6, pp. 997–1006, 1998. View at Google Scholar · View at Scopus
  10. P. Stenvinkel, O. Heimbürger, and B. Lindholm, “Wasting, but not malnutrition, predicts cardiovascular mortality in end-stage renal disease,” Nephrology Dialysis Transplantation, vol. 19, no. 9, pp. 2181–2183, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. W. J. Evans, J. E. Morley, J. Argilés et al., “Cachexia: a new definition,” Clinical Nutrition, vol. 27, no. 6, pp. 793–799, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. N. Noori, J. D. Kopple, C. P. Kovesdy et al., “Mid-arm muscle circumference and quality of life and survival in maintenance hemodialysis patients,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 12, pp. 2258–2268, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. R. Bross, G. Chandramohan, C. P. Kovesdy et al., “Comparing body composition assessment tests in long-term hemodialysis patients,” American Journal of Kidney Diseases, vol. 55, no. 5, pp. 885–896, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. D. Fouque, K. Kalantar-Zadeh, J. Kopple et al., “A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease,” Kidney International, vol. 73, no. 4, pp. 391–398, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. C. S. Shinaberger, R. D. Kilpatrick, D. L. Regidor et al., “Longitudinal associations between dietary protein intake and survival in hemodialysis patients,” American Journal of Kidney Diseases, vol. 48, no. 1, pp. 37–49, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. W. F. Owen Jr., N. L. Lew, Y. Liu, E. G. Lowrie, and J. M. Lazarus, “The urea reduction ratio and serum albumin concentration as predictors of mortality in patients undergoing hemodialysis,” The New England Journal of Medicine, vol. 329, no. 14, pp. 1001–1006, 1993. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. S. Beddhu, G. A. Kaysen, G. Yan et al., “Association of serum albumin and atherosclerosis in chronic hemodialysis patients,” American Journal of Kidney Diseases, vol. 40, no. 4, pp. 721–727, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. K. Kalantar-Zadeh, R. D. Kilpatrick, N. Kuwae et al., “Revisiting mortality predictability of serum albumin in the dialysis population: time dependency, longitudinal changes and population-attributable fraction,” Nephrology Dialysis Transplantation, vol. 20, no. 9, pp. 1880–1888, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. C. P. Kovesdy, S. M. George, J. E. Anderson, and K. Kalantar-Zadeh, “Outcome predictability of biomarkers of protein-energy wasting and inflammation in moderate and advanced chronic kidney disease,” American Journal of Clinical Nutrition, vol. 90, no. 2, pp. 407–414, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. N. J. M. Cano, D. Fouque, H. Roth et al., “Intradialytic parenteral nutrition does not improve survival in malnourished hemodialysis patients: a 2-year multicenter, prospective, randomized study,” Journal of the American Society of Nephrology, vol. 18, no. 9, pp. 2583–2591, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. M. Rambod, C. P. Kovesdy, R. Bross, J. D. Kopple, and K. Kalantar-Zadeh, “Association of serum prealbumin and its changes over time with clinical outcomes and survival in patients receiving hemodialysis,” American Journal of Clinical Nutrition, vol. 88, no. 6, pp. 1485–1494, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. K. Kalantar-Zadeh, M. Kleiner, E. Dunne et al., “Total iron-binding capacity-estimated transferrin correlates with the nutritional subjective global assessment in hemodialysis patients,” American Journal of Kidney Diseases, vol. 31, no. 2, pp. 263–272, 1998. View at Google Scholar · View at Scopus
  23. R. Bross, J. Zitterkoph, J. Pithia et al., “Association of serum total iron-binding capacity and its changes over time with nutritional and clinical outcomes in hemodialysis patients,” American Journal of Nephrology, vol. 29, no. 6, pp. 571–581, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. S. Desmeules, R. Lévesque, I. Jaussent, H. Leray-Moragues, L. Chalabi, and B. Canaud, “Creatinine index and lean body mass are excellent predictors of long-term survival in haemodiafiltration patients,” Nephrology Dialysis Transplantation, vol. 19, no. 5, pp. 1182–1189, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. S. Ohkawa, M. Odamaki, N. Ikegaya, I. Hibi, K. Miyaji, and H. Kumagai, “Association of age with muscle mass, fat mass and fat distribution in non-diabetic haemodialysis patients,” Nephrology Dialysis Transplantation, vol. 20, no. 5, pp. 945–951, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. D. S. C. Raj, Y. Sun, and A. H. Tzamaloukas, “Hypercatabolism in dialysis patients,” Current Opinion in Nephrology and Hypertension, vol. 17, no. 6, pp. 589–594, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. D. S. Raj, E. A. Dominic, R. Wolfe et al., “Coordinated increase in albumin, fibrinogen, and muscle protein synthesis during hemodialysis: role of cytokines,” American Journal of Physiology, vol. 286, no. 4, pp. E658–E664, 2004. View at Google Scholar
  28. M. Giordano, P. De Feo, P. Lucidi et al., “Increased albumin fibrinogen synthesis hemodialysis patients with normal nutritional status,” Journal of the American Society of Nephrology, vol. 12, no. 2, pp. 349–354, 2001. View at Google Scholar · View at Scopus
  29. H. Honda, A. R. Qureshi, J. Axelsson et al., “Obese sarcopenia in patients with end-stage renal disease is associated with inflammation and increased mortality,” American Journal of Clinical Nutrition, vol. 86, no. 3, pp. 633–638, 2007. View at Google Scholar · View at Scopus
  30. F. Bellisle, A. M. Dartois, C. Kleinknecht, and M. Broyer, “Alteration of the taste for sugar in renal insufficiency: study in the child,” Nephrologie, vol. 16, no. 2, pp. 203–208, 1995. View at Google Scholar
  31. K. C. Hung, C. C. Wu, H. S. Chen et al., “Serum IL-6, albumin and co-morbidities are closely correlated with symptoms of depression in patients on maintenance haemodialysis,” Nephrology Dialysis Transplantation, vol. 26, no. 2, pp. 658–664, 2011. View at Google Scholar
  32. R. H. Mak, W. Cheung, R. D. Cone, and D. L. Marks, “Mechanisms of disease: cytokine and adipokine signaling in uremic cachexia,” Nature Clinical Practice Nephrology, vol. 2, no. 9, pp. 527–534, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. R. H. Mak, W. Cheung, and J. Purnell, “Ghrelin in chronic kidney disease: too much or too little?” Peritoneal Dialysis International, vol. 27, no. 1, pp. 51–55, 2007. View at Google Scholar · View at Scopus
  34. W. W. Cheung, H. J. Kuo, S. Markison et al., “Peripheral administration of the melanocortin-4 receptor antagonist NBI-12i ameliorates uremia-associated cachexia in mice,” Journal of the American Society of Nephrology, vol. 18, no. 9, pp. 2517–2524, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. A. Yoshimoto, K. Mori, A. Sugawara et al., “Plasma ghrelin and desacyl ghrelin concentrations in renal failure,” Journal of the American Society of Nephrology, vol. 13, no. 11, pp. 2748–2752, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Bonanni, I. Mannucci, D. Verzola et al., “Protein-energy wasting and mortality in chronic kidney disease,” International Journal of Environmental Research and Public Health, vol. 8, no. 5, pp. 1631–1654, 2011. View at Google Scholar
  37. M. K. Abramowitz, T. H. Hostetter, and M. L. Melamed, “Association of serum bicarbonate levels with gait speed and quadriceps strength in older adults,” American Journal of Kidney Diseases, vol. 58, no. 1, pp. 29–38, 2011. View at Google Scholar
  38. J. A. Kraut and N. E. Madias, “Consequences and therapy of the metabolic acidosis of chronic kidney disease,” Pediatric Nephrology, vol. 26, no. 1, pp. 19–28, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. E. D. Siew and T. A. Ikizler, “Insulin resistance and protein energy metabolism in patients with advanced chronic kidney disease,” Seminars in Dialysis, vol. 23, no. 4, pp. 378–382, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. R. H. K. Mak, “Effect of metabolic acidosis on insulin action and secretion in uremia,” Kidney International, vol. 54, no. 2, pp. 603–607, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. E. D. Siew and T. A. Ikizler, “Insulin resistance and protein energy metabolism in patients with advanced chronic kidney disease,” Seminars in Dialysis, vol. 23, no. 4, pp. 378–382, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. L. B. Pupim, O. Heimbürger, A. R. Qureshi, T. A. Ikizler, and P. Stenvinkel, “Accelerated lean body mass loss in incident chronic dialysis patients with diabetes mellitus,” Kidney International, vol. 68, no. 5, pp. 2368–2374, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. L. B. Pupim, P. J. Flakoll, K. M. Majchrzak, D. L. Aftab Guy, P. Stenvinkel, and T. A. Ikizler, “Increased muscle protein breakdown in chronic hemodialysis patients with type 2 diabetes mellitus,” Kidney International, vol. 68, no. 4, pp. 1857–1865, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. G. A. Kaysen, “Diabetes, a cause of progressive sarcopenia in dialysis patients?” Kidney International, vol. 68, no. 5, pp. 2396–2397, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. E. D. Siew, L. B. Pupim, K. M. Majchrzak, A. Shintani, P. J. Flakoll, and T. A. Ikizler, “Insulin resistance is associated with skeletal muscle protein breakdown in non-diabetic chronic hemodialysis patients,” Kidney International, vol. 71, no. 2, pp. 146–152, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. S. W. Lee, G. Dai, Z. Hu, X. Wang, J. Du, and W. E. Mitch, “Regulation of muscle protein degradation: coordinated control of apoptotic and ubiquitin-proteasome systems by phosphatidylinositol 3 kinase,” Journal of the American Society of Nephrology, vol. 15, no. 6, pp. 1537–1545, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. S. M. Brunelli, R. Thadhani, T. A. Ikizler, and H. I. Feldman, “Thiazolidinedione use is associated with better survival in hemodialysis patients with non-insulin dependent diabetes,” Kidney International, vol. 75, no. 9, pp. 961–968, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. O. Adeniyi, E. I. Agaba, M. King, K. S. Servilla, L. Massie, and A. H. Tzamaloukas, “Severe proximal myopathy in advanced renal failure. Diagnosis and management,” African Journal of Medicine and Medical Sciences, vol. 33, no. 4, pp. 385–388, 2004. View at Google Scholar · View at Scopus
  49. R. L. Ruff and J. Weissmann, “Endocrine myopathies,” Neurologic Clinics, vol. 6, no. 3, pp. 575–592, 1988. View at Google Scholar · View at Scopus
  50. M. Chonchol and R. Scragg, “25-Hydroxyvitamin D, insulin resistance, and kidney function in the Third National Health and Nutrition Examination Survey,” Kidney International, vol. 71, no. 2, pp. 134–139, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. A. Remuzzi, “Vitamin D, insulin resistance, and renal disease,” Kidney International, vol. 71, no. 2, pp. 96–98, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. A. W. Norman, B. J. Frankel, A. M. Heldt, and G. M. Grodsky, “Vitamin D deficiency inhibits pancreatic secretion of insulin,” Science, vol. 209, no. 4458, pp. 823–825, 1980. View at Google Scholar · View at Scopus
  53. C. Cade and A. W. Norman, “Vitamin D3 improves impaired glucose tolerance and insulin secretion in the vitamin D-deficient rat in vivo,” Endocrinology, vol. 119, no. 1, pp. 84–90, 1986. View at Google Scholar · View at Scopus
  54. R. H. K. Mak, “1,25-Dihydroxyvitamin D3 corrects insulin and lipid abnormalities in uremia,” Kidney International, vol. 53, no. 5, pp. 1353–1357, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. G. A. Kaysen, “Association between inflammation and malnutrition as risk factors of cardiovascular disease,” Blood Purification, vol. 24, no. 1, pp. 51–55, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. D. S. C. Raj, E. A. Dominic, A. Pai et al., “Skeletal muscle, cytokines, and oxidative stress in end-stage renal disease,” Kidney International, vol. 68, no. 5, pp. 2338–2344, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. C. Castaneda-Sceppa, M. J. Sarnak, X. Wang et al., “Role of adipose tissue in determining muscle mass in patients with chronic kidney disease,” Journal of Renal Nutrition, vol. 17, no. 5, pp. 314–322, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. B. T. Workeneh and W. E. Mitch, “Review of muscle wasting associated with chronic kidney disease,” American Journal of Clinical Nutrition, vol. 91, no. 4, pp. 1128S–1132S, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. R. H. Mak and W. W. Cheung, “Is ghrelin a biomarker for mortality in end-stage renal disease?” Kidney Int., vol. 79, no. 7, pp. 697–699, 2011. View at Google Scholar · View at Scopus
  60. D. S. Raj, O. Adeniyi, E. A. Dominic et al., “Amino acid repletion does not decrease muscle protein catabolism during hemodialysis,” American Journal of Physiology—Endocrinology and Metabolism, vol. 292, no. 6, pp. E1534–E1542, 2007. View at Google Scholar
  61. M. D. Grounds, H. G. Radley, B. L. Gebski, M. A. Bogoyevitch, and T. Shavlakadze, “Implications of cross-talk between tumour necrosis factor and insulin-like growth factor-1 signalling in skeletal muscle,” Clinical and Experimental Pharmacology and Physiology, vol. 35, no. 7, pp. 846–851, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. S. Messina, A. Bitto, M. Aguennouz et al., “Nuclear factor kappa-B blockade reduces skeletal muscle degeneration and enhances muscle function in Mdx mice,” Experimental Neurology, vol. 198, no. 1, pp. 234–241, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. A. Y. M. Wang, M. M. M. Sea, N. Tang et al., “Resting energy expenditure and subsequent mortality risk in peritoneal dialysis patients,” Journal of the American Society of Nephrology, vol. 15, no. 12, pp. 3134–3143, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. J. M. Argiles, S. Busquets, and F. J. Lopez-Soriano, “The role of uncoupling proteins in pathophysiological states,” Biochemical and Biophysical Research Communications, vol. 293, no. 4, pp. 1145–1152, 2002. View at Google Scholar
  65. N. J. Rothwell and M. J. Stock, “A role for brown adipose tissue in diet-induced thermogenesis,” Nature, vol. 281, no. 5726, pp. 31–35, 1979. View at Google Scholar · View at Scopus
  66. B. B. Lowell, N. B. Ruderman, and M. N. Goodman, “Evidence that lysosomes are not involved in the degradation of myofibrillar proteins in rat skeletal muscle,” Biochemical Journal, vol. 234, no. 1, pp. 237–240, 1986. View at Google Scholar · View at Scopus
  67. A. Ciechanover, “Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting,” Biochimica et Biophysica Acta, vol. 1824, no. 1, pp. 3–13, 2012. View at Google Scholar
  68. S. C. Bodine, E. Latres, S. Baumhueter et al., “Identification of ubiquitin ligases required for skeletal Muscle Atrophy,” Science, vol. 294, no. 5547, pp. 1704–1708, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. D. S. Waddell, L. M. Baehr, J. van den Brandt et al., “The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene,” American Journal of Physiology—Endocrinology and Metabolism, vol. 295, no. 4, pp. E785–E797, 2008. View at Google Scholar
  70. D. F. Sun, Y. Chen, and R. Rabkin, “Work-induced changes in skeletal muscle IGF-1 and myostatin gene expression in uremia,” Kidney International, vol. 70, no. 3, pp. 453–459, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. T. W. Storer, R. Casaburi, S. Sawelson, and J. D. Kopple, “Endurance exercise training during haemodialysis improves strength, power, fatigability and physical performance in maintenance haemodialysis patients,” Nephrology Dialysis Transplantation, vol. 20, no. 7, pp. 1429–1437, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. C. Castaneda, P. L. Gordon, R. C. Parker, K. L. Uhlin, R. Roubenoff, and A. S. Levey, “Resistance training to reduce the malnutrition-inflammation complex syndrome of chronic kidney disease,” American Journal of Kidney Diseases, vol. 43, no. 4, pp. 607–616, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. B. Cheema, H. Abas, B. Smith et al., “Progressive exercise for anabolism in kidney disease (PEAK): a randomized, controlled trial of resistance training during hemodialysis,” Journal of the American Society of Nephrology, vol. 18, no. 5, pp. 1594–1601, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. K. L. Johansen, P. L. Painter, G. K. Sakkas, P. Gordon, J. Doyle, and T. Shubert, “Effects of resistance exercise training and nandrolone decanoate on body composition and muscle function among patients who receive hemodialysis: a randomized, controlled trial,” Journal of the American Society of Nephrology, vol. 17, no. 8, pp. 2307–2314, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. J. D. Kopple, H. Wang, R. Casaburi et al., “Exercise in maintenance hemodialysis patients induces transcriptional changes in genes favoring anabolic muscle,” Journal of the American Society of Nephrology, vol. 18, no. 11, pp. 2975–2986, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. B. S. B. Cheema and M. A. Singh, “Exercise training in patients receiving maintenance hemodialysis: a systematic review of clinical trials,” American Journal of Nephrology, vol. 25, no. 4, pp. 352–364, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. S. Headley, M. Germain, P. Mailloux et al., “Resistance training improves strength and functional measures in patients with end-stage renal disease,” American Journal of Kidney Diseases, vol. 40, no. 2, pp. 355–364, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Deligiannis, E. Kouidi, E. Tassoulas, P. Gigis, A. Tourkantonis, and A. Coats, “Cardiac effects of exercise rehabilitation in hemodialysis patients,” International Journal of Cardiology, vol. 70, no. 3, pp. 253–266, 1999. View at Publisher · View at Google Scholar · View at Scopus
  79. E. J. Kouidi, “Central and peripheral adaptations to physical training in patients with end-stage renal disease,” Sports Medicine, vol. 31, no. 9, pp. 651–665, 2001. View at Google Scholar · View at Scopus
  80. J. E. Anderson, M. R. Boivin Jr., and L. Hatchett, “Effect of exercise training on interdialytic ambulatory and treatment-related blood pressure in hemodialysis patients,” Renal Failure, vol. 26, no. 5, pp. 539–544, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. B. W. Miller, C. L. Cress, M. E. Johnson, D. H. Nichols, and M. A. Schnitzler, “Exercise during hemodialysis decreases the use of antihypertensive medications,” American Journal of Kidney Diseases, vol. 39, no. 4, pp. 828–833, 2002. View at Google Scholar · View at Scopus
  82. U. Pechter, M. Ots, S. Mesikepp et al., “Beneficial effects of water-based exercise in patients with chronic kidney disease,” International Journal of Rehabilitation Research, vol. 26, no. 2, pp. 153–156, 2003. View at Google Scholar · View at Scopus
  83. M. L. Boyce, R. A. Robergs, P. S. Avasthi et al., “Exercise training by individuals with predialysis renal failure: cardiorespiratory endurance, hypertension, and renal function,” American Journal of Kidney Diseases, vol. 30, no. 2, pp. 180–192, 1997. View at Google Scholar · View at Scopus
  84. S. Mustata, S. Groeneveld, W. Davidson, G. Ford, K. Kiland, and B. Manns, “Effects of exercise training on physical impairment, arterial stiffness and health-related quality of life in patients with chronic kidney disease: a pilot study,” International Urology and Nephrology, vol. 43, no. 4, pp. 1133–1141, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. A. P. Goldberg, E. M. Geltman, J. R. Gavin III et al., “Exercise training reduces coronary risk and effectively rehabilitates hemodialysis patients,” Nephron, vol. 42, no. 4, pp. 311–316, 1986. View at Google Scholar
  86. V. S. Conn, A. R. Hafdahl, D. R. Mehr, J. W. LeMaster, S. A. Brown, and P. J. Nielsen, “Metabolic effects of interventions to increase exercise in adults with type 2 diabetes,” Diabetologia, vol. 50, no. 5, pp. 913–921, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. T. L. Parsons, E. B. Toffelmire, and C. E. King-VanVlack, “Exercise training during hemodialysis improves dialysis efficacy and physical performance,” Archives of Physical Medicine and Rehabilitation, vol. 87, no. 5, pp. 680–687, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. M. Oh-Park, A. Fast, S. Gopal et al., “Exercise for the dialyzed: aerobic and strength training during hemodialysis,” American Journal of Physical Medicine and Rehabilitation, vol. 81, no. 11, pp. 814–821, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. C. H. Kong, J. E. Tattersall, R. N. Greenwood, and K. Farrington, “The effect of exercise during haemodialysis on solute removal,” Nephrology Dialysis Transplantation, vol. 14, no. 12, pp. 2927–2931, 1999. View at Google Scholar · View at Scopus
  90. E. Kouidi, M. Albani, K. Natsis et al., “The effects of exercise training on muscle atrophy in haemodialysis patients,” Nephrology Dialysis Transplantation, vol. 13, no. 3, pp. 685–699, 1998. View at Publisher · View at Google Scholar · View at Scopus
  91. T. W. Storer, R. Casaburi, S. Sawelson, and J. D. Kopple, “Endurance exercise training during haemodialysis improves strength, power, fatigability and physical performance in maintenance haemodialysis patients,” Nephrology Dialysis Transplantation, vol. 20, no. 7, pp. 1429–1437, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. E. Kouidi, A. Iacovides, P. Iordanidis et al., “Exercise renal rehabilitation program: psychosocial effects,” Nephron, vol. 77, no. 2, pp. 152–158, 1997. View at Google Scholar
  93. S. Ouzouni, E. Kouidi, A. Sioulis, D. Grekas, and A. Deligiannis, “Effects of intradialytic exercise training on health-related quality of life indices in haemodialysis patients,” Clinical Rehabilitation, vol. 23, no. 1, pp. 53–63, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. P. Painter, A. L. Stewart, and S. Carey, “Physical functioning: definitions, measurement, and expectations,” Advances in Renal Replacement Therapy, vol. 6, no. 2, pp. 110–123, 1999. View at Google Scholar · View at Scopus
  95. S. Frey, A. R. Mir, and M. Lucas, “Visceral protein status and caloric intake in exercising versus nonexercising individuals with end-stage renal disease,” Journal of Renal Nutrition, vol. 9, no. 2, pp. 71–77, 1999. View at Google Scholar · View at Scopus
  96. M. B. Sundell, K. L. Cavanaugh, P. Wu, A. Shintani, R. M. Hakim, and T. A. Ikizler, “Oral protein supplementation alone improves anabolism in a dose-dependent manner in chronic hemodialysis patients,” Journal of Renal Nutrition, vol. 19, no. 5, pp. 412–421, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. M. A. Allman, P. M. Stewart, D. J. Tiller, J. S. Horvath, G. G. Duggin, and A. S. Truswell, “Energy supplementation and the nutritional status of hemodialysis patients,” American Journal of Clinical Nutrition, vol. 51, no. 4, pp. 558–562, 1990. View at Google Scholar · View at Scopus
  98. M. C. Milano, A. M. Cusumano, E. T. Navarro, and M. Turín, “Energy supplementation in chronic hemodialysis patients with moderate and severe malnutrition,” Journal of Renal Nutrition, vol. 8, no. 4, pp. 212–217, 1998. View at Google Scholar · View at Scopus
  99. M. K. Kuhlmann, F. Schmidt, and H. Kohler, “High protein/energy vs. standard protein/energy nutritional regimen in the treatment of malnourished hemodialysis patients,” Mineral and Electrolyte Metabolism, vol. 25, no. 4–6, pp. 306–310, 1999. View at Google Scholar
  100. M. G. Patel, S. Kitchen, and P. J. Miligan, “The effect of dietary supplements on the nPCR in stable hemodialysis patients,” Journal of Renal Nutrition, vol. 10, no. 2, pp. 69–75, 2000. View at Google Scholar · View at Scopus
  101. K. Hiroshige, T. Sonta, T. Suda, K. Kanegae, and A. Ohtani, “Oral supplementation of branched-chain amino acid improves nutritional status in elderly patients on chronic haemodialysis,” Nephrology Dialysis Transplantation, vol. 16, no. 9, pp. 1856–1862, 2001. View at Google Scholar · View at Scopus
  102. J. B. Leon, J. M. Albert, G. Gilchrist et al., “Improving albumin levels among hemodialysis patients: a community-based randomized controlled trial,” American Journal of Kidney Diseases, vol. 48, no. 1, pp. 28–36, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. D. Fouque, J. McKenzie, R. De Mutsert et al., “Use of a renal-specific oral supplement by haemodialysis patients with low protein intake does not increase the need for phosphate binders and may prevent a decline in nutritional status and quality of life,” Nephrology Dialysis Transplantation, vol. 23, no. 9, pp. 2902–2910, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. K. Caglar, L. Fedje, R. Dimmitt, R. M. Hakim, Y. Shyr, and T. A. Ikizler, “Therapeutic effects of oral nutritional supplementation during hemodialysis,” Kidney International, vol. 62, no. 3, pp. 1054–1059, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. L. B. Pupim, P. J. Flakoll, D. K. Levenhagen, and T. A. Ikizler, “Exercise augments the acute anabolic effects of intradialytic parenteral nutrition in chronic hemodialysis patients,” American Journal of Physiology—Endocrinology and Metabolism, vol. 286, no. 4, pp. E589–E597, 2004. View at Google Scholar
  106. K. M. Majchrzak, L. B. Pupim, P. J. Flakoll, and T. A. Ikizler, “Resistance exercise augments the acute anabolic effects of intradialytic oral nutritional supplementation,” Nephrology Dialysis Transplantation, vol. 23, no. 4, pp. 1362–1369, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. W. Cheung, P. X. Yu, B. M. Little, R. D. Cone, D. L. Marks, and R. H. Mak, “Role of leptin and melanocortin signaling in uremia-associated cachexia,” Journal of Clinical Investigation, vol. 115, no. 6, pp. 1659–1665, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  108. J. A. Boccanfuso, M. Hutton, and B. McAllister, “The effects of megestrol acetate on nutritional parameters in a dialysis population,” Journal of Renal Nutrition, vol. 10, no. 1, pp. 36–43, 2000. View at Google Scholar · View at Scopus
  109. J. D. Burrowes, P. A. Bluestone, J. Wang, and R. N. Pierson, “The effects of moderate doses of megestrol acetate on nutritional status and body composition in a hemodialysis patient,” Journal of Renal Nutrition, vol. 9, no. 2, pp. 89–94, 1999. View at Google Scholar · View at Scopus
  110. S. S. Yeh, M. Marandi, H. C. Thode Jr. et al., “Report of a pilot, double-blind, placebo-controlled study of megestrol acetate in elderly dialysis patients with cachexia,” Journal of Renal Nutrition, vol. 20, no. 1, pp. 52–62, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  111. J. Golebiewska, M. Lichodziejewska-Niemierko, E. Aleksandrowicz, M. Majkowicz, W. Lysiak-Szydlowska, and B. Rutkowski, “Influence of megestrol acetate on nutrition and inflammation in dialysis patients—preliminary results,” Acta Biochimica Polonica, vol. 56, no. 4, pp. 733–737, 2009. View at Google Scholar
  112. L. B. Pupim, P. J. Flakoll, C. Yu, and T. A. Ikizler, “Recombinant human growth hormone improves muscle amino acid uptake and whole-body protein metabolism in chronic hemodialysis patients,” American Journal of Clinical Nutrition, vol. 82, no. 6, pp. 1235–1243, 2005. View at Google Scholar · View at Scopus
  113. G. Garibotto, A. Barreca, R. Russo et al., “Effects of recombinant human growth hormone on muscle protein turnover in malnourished hemodialysis patients,” Journal of Clinical Investigation, vol. 99, no. 1, pp. 97–105, 1997. View at Google Scholar · View at Scopus
  114. B. Feldt-Rasmussen, M. Lange, W. Sulowicz et al., “Growth hormone treatment during hemodialysis in a randomized trial improves nutrition, quality of life, and cardiovascular risk,” Journal of the American Society of Nephrology, vol. 18, no. 7, pp. 2161–2171, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  115. K. Wynne, K. Giannitsopoulou, C. J. Small et al., “Subcutaneous ghrelin enhances acute food intake in malnourished patients who receive maintenance peritoneal dialysis: a randomized, placebo-controlled trial,” Journal of the American Society of Nephrology, vol. 16, no. 7, pp. 2111–2118, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  116. D. R. Ashby, H. E. Ford, K. J. Wynne et al., “Sustained appetite improvement in malnourished dialysis patients by daily ghrelin treatment,” Kidney International, vol. 76, no. 2, pp. 199–206, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  117. J. Adams and M. Kauffman, “Development of the proteasome inhibitor Velcade (Bortezomib),” Cancer Investigation, vol. 22, no. 2, pp. 304–311, 2004. View at Publisher · View at Google Scholar · View at Scopus
  118. R. Galland, J. Traeger, W. Arkouche, C. Cleaud, E. Delawari, and D. Fouque, “Short daily hemodialysis rapidly improves nutritional status in hemodialysis patients,” Kidney International, vol. 60, no. 4, pp. 1555–1560, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  119. R. Galland and J. Traeger, “Short daily hemodialysis and nutritional status in patients with chronic renal failure,” Seminars in Dialysis, vol. 17, no. 2, pp. 104–108, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  120. J. Mitri, M. D. Muraru, and A. G. Pittas, “Vitamin D and type 2 diabetes: a systematic review,” European Journal of Clinical Nutrition, vol. 65, no. 9, pp. 1005–1015, 2011. View at Google Scholar
  121. E. Lofberg, A. Gutierrez, B. Anderstam et al., “Effect of bicarbonate on muscle protein in patients receiving hemodialysis,” American Journal of Kidney Diseases, vol. 48, no. 3, pp. 419–429, 2006. View at Google Scholar
  122. A. Stein, J. Moorhouse, H. Iles-Smith et al., “Role of an improvement in acid-base status and nutrition in CAPD patients,” Kidney International, vol. 52, no. 4, pp. 1089–1095, 1997. View at Google Scholar · View at Scopus
  123. W. P. Pickering, S. Russ Price, G. Bircher, A. C. Marinovic, W. E. Mitch, and J. Walls, “Nutrition in CAPD: serum bicarbonate and the ubiquitin-proteasome system in muscle,” Kidney International, vol. 61, no. 4, pp. 1286–1292, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  124. I. de Brito-Ashurst, M. Varagunam, M. J. Raftery, and M. M. Yaqoob, “Bicarbonate supplementation slows progression of CKD and improves nutritional status,” Journal of the American Society of Nephrology, vol. 20, no. 9, pp. 2075–2084, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  125. K. Ciechanowski, “Cult of the body and the kidneys,” Polski Merkuriusz Lekarski, vol. 28, no. 164, pp. 93–96, 2010. View at Google Scholar · View at Scopus