Table of Contents Author Guidelines Submit a Manuscript
Journal of Advanced Transportation
Volume 2017 (2017), Article ID 7696094, 10 pages
https://doi.org/10.1155/2017/7696094
Research Article

Relieving the Impact of Transit Signal Priority on Passenger Cars through a Bilevel Model

MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, School of Traffic and Transportation, Beijing Jiaotong University, Beijing, China

Correspondence should be addressed to Wenxin Qiao

Received 1 March 2017; Revised 8 May 2017; Accepted 18 May 2017; Published 11 July 2017

Academic Editor: Dongjoo Park

Copyright © 2017 Ding Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Transit signal priority (TSP) is an effective control strategy to improve transit operations on the urban network. However, the TSP may sacrifice the right-of-way of vehicles from side streets which have only few transit vehicles; therefore, how to minimize the negative impact of TSP strategy on the side streets is an important issue to be addressed. Concerning the typical mixed-traffic flow pattern and heavy transit volume in China, a bilevel model is proposed in this paper: the upper-level model focused on minimizing the vehicle delay in the nonpriority direction while ensuring acceptable delay variation in transit priority direction, and the lower-level model aimed at minimizing the average passenger delay in the entire intersection. The parameters which will affect the efficiency of the bilevel model have been analyzed based on a hypothetical intersection. Finally, a real-world intersection has been studied, and the average vehicle delay in the nonpriority direction decreased 11.28 s and 22.54 s (under different delay variation constraint) compared to the models that only minimize average passenger delay, while the vehicle delay in the priority direction increased only 1.37 s and 2.87 s; the results proved the practical applicability and efficiency of the proposed bilevel model.