Table of Contents Author Guidelines Submit a Manuscript
Journal of Botany
Volume 2012, Article ID 135479, 4 pages
http://dx.doi.org/10.1155/2012/135479
Review Article

Phytotoxicity: An Overview of the Physiological Responses of Plants Exposed to Fungicides

Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810 Aveiro, Portugal

Received 15 October 2011; Revised 5 January 2012; Accepted 26 January 2012

Academic Editor: Helena Oliveira

Copyright © 2012 Maria Celeste Dias. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. L. Gullino, P. Leroux, and C. M. Smith, “Uses and challenges of novel compounds for plant disease control,” Crop Protection, vol. 19, no. 1, pp. 1–11, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. X. J. Xia, Y. Y. Huang, L. Wang et al., “Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L.,” Pesticide Biochemistry and Physiology, vol. 86, no. 1, pp. 42–48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. P. C. García, R. M. Rivero, J. M. Ruiz, and L. Romero, “The role of fungicides in the physiology of higher plants: implications for defense responses,” Botanical Review, vol. 69, no. 2, pp. 162–172, 2003. View at Google Scholar · View at Scopus
  4. F. Belpoggi, M. Soffritti, M. Guarino, L. Lambertini, D. Cevolani, and C. Maltoni, “Results of long-term experimental studies on the carcinogenicity of ethylenebis- dithiocarbamate (mancozeb) in rats,” Annual New York Academic Science, vol. 982, pp. 123–136, 2002. View at Google Scholar
  5. C. A. C. Mendes, G. E. Mendes, J. P. Cipullo, and E. A. Burdmann, “Acute intoxication due to ingestion of vegetables contaminated with aldicarb,” Clinical Toxicology, vol. 43, no. 2, pp. 117–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. European Food Safety Authority, “Annual report on pesticide residues,” EFSA Scientific Report vol. 305, 2009. View at Google Scholar
  7. A. N. Petit, F. Fontaine, C. Clément, and N. Vaillant-Gaveau, “Photosynthesis limitations of grapevine after treatment with the fungicide fludioxonil,” Journal of Agricultural and Food Chemistry, vol. 56, no. 15, pp. 6761–6767, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Saladin, C. Magné, and C. Clément, “Effects of fludioxonil and pyrimethanil, two fungicides used against Botrytis cinerea, on carbohydrate physiology in Vitis vinifera L.,” Pest Management Science, vol. 59, no. 10, pp. 1083–1092, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. P. Bryant, F. S. Chapin, and D. R. Klein, “Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory,” Oikos, vol. 40, no. 3, pp. 357–368, 1983. View at Google Scholar · View at Scopus
  10. C. S. Awmack and S. R. Leather, “Host plant quality and fecundity in herbivorous insects,” Annual Review of Entomology, vol. 47, pp. 817–844, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. X. Wu and A. Von Tiedemann, “Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone,” Environmental Pollution, vol. 116, no. 1, pp. 37–47, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Muthukumarasamy and R. Panneerselvam, “Amelioration of NaCl stress by triadimefon in peanut seedlings,” Plant Growth Regulation, vol. 22, no. 3, pp. 157–162, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. A. M. Ahmed, M. D. Heikal, and O. S. Hindawy, “Side effects of benomyl (Fungicide) treatments on sunflower, cotton and cowpea plants,” Phyton, vol. 23, pp. 185–195, 1983. View at Google Scholar
  14. R. Untiedt and M. Blanke, “Effects of fruit thinning agents on apple tree canopy photosynthesis and dark respiration,” Plant Growth Regulation, vol. 35, no. 1, pp. 1–9, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Untiedt and M. M. Blanke, “Effects of fungicide and insecticide mixtures on apple tree canopy photosynthesis, dark respiration and carbon economy,” Crop Protection, vol. 23, no. 10, pp. 1001–1006, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. M. P. Yuste and J. Gostinear, Handbook of Agriculture, Marcel Dekker, New York, NY, USA, 1999.
  17. M. Hunsche, L. Damerow, M. Schmitz-Eiberger, and G. Noga, “Mancozeb wash-off from apple seedlings by simulated rainfall as affected by drying time of fungicide deposit and rain characteristics,” Crop Protection, vol. 26, no. 5, pp. 768–774, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. L. G. Copping, “Review of major agrochemical classes and uses,” in Chemistry and Technology of Agrochemical Foundations, D. A. Knowles, Ed., p. 29, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998. View at Google Scholar
  19. C. J. Delp, “Benzimidazole and related fungicides,” in Modem Selective Fungicides: Properties, Applications, Mechanisms of Action, H. Lyr, Ed., pp. 233–244, Wiley, New York, NY, USA, 1987. View at Google Scholar
  20. C. Tomlin, “The pesticide manual: a world compendium,” in Incorporating the Agrochemicals Handbook, Royal Society of Chemistry, England, UK, 1994. View at Google Scholar
  21. H. G. Hewitt, Fungicides in Crop Protection, CAB International, New York, NY, USA, 1998.
  22. B. W. Krugh and D. Miles, “Monitoring the effects of five "nonherbicidal" pesticide chemicals on terrestrial plants using chlorophyll fluorescence,” Environmental Toxicology and Chemistry, vol. 15, no. 4, pp. 495–500, 1996. View at Google Scholar · View at Scopus
  23. M. W. Van Iersel and B. Bugbee, “Phytotoxic effects of benzimidazole fungicides on bedding plants,” Journal of the American Society for Horticultural Science, vol. 121, no. 6, pp. 1095–1102, 1996. View at Google Scholar · View at Scopus
  24. M. A. Nason, J. Farrar, and D. Bartlett, “Strobilurin fungicides induce changes in photosynthetic gas exchange that do not improve water use efficiency of plants grown under conditions of water stress,” Pest Management Science, vol. 63, no. 12, pp. 1191–1200, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Glaab and W. M. Kaiser, “Increased nitrate reductase activity in leaf tissue after application of the fungicide Kresoxim-methyl,” Planta, vol. 207, no. 3, pp. 442–448, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Grossmann, J. Kwiatkowski, and G. Caspar, “Regulation of phytohormone levels, leaf senescence and transpiration by the strobilurin kresoxim-methyl in wheat (Triticum aestivum),” Journal of Plant Physiology, vol. 154, no. 5-6, pp. 805–808, 1999. View at Google Scholar · View at Scopus
  27. K. P. Bader and R. Abdel-Basset, “Adaptation of plants to anthropogenic and environmental stresses,” in The Effects of Air Constituents and Plant-Protective Chemicals, M. Pessarakli, Ed., Handbook of Plant and Crop Stress, pp. 973–1010, Marcel Dekker, New York, NY, USA, 1999. View at Google Scholar
  28. L. Mihuta-Grimm, W. A. Erb, and R. C. Rowe, “Fusarium crown and root rot of tomato in greenhouse rock wool systems: sources of inoculum and disease management with benomyl,” Plant Disease, vol. 74, pp. 996–1002, 1990. View at Google Scholar
  29. H. Köhle, K. Grossmann, G. Retzlaff, and A. Akers, “Physiological effects of the new fungicide Juwel on yield in cereals,” Gesunde Pflanzen, vol. 49, no. 8, pp. 267–271, 1997. View at Google Scholar · View at Scopus