Table of Contents
Journal of Botany
Volume 2012, Article ID 872875, 37 pages
http://dx.doi.org/10.1155/2012/872875
Review Article

Molecular Mechanism of Heavy Metal Toxicity and Tolerance in Plants: Central Role of Glutathione in Detoxification of Reactive Oxygen Species and Methylglyoxal and in Heavy Metal Chelation

1Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
2Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
3Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
4Laboratory of Ornamental Floriculture, Department of Bioproduction Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan

Received 16 September 2011; Revised 17 November 2011; Accepted 19 December 2011

Academic Editor: Andrea Polle

Copyright © 2012 Mohammad Anwar Hossain et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. DalCorso, S. Farinati, S. Maistri, and A. Furini, “How plants cope with cadmium: staking all on metabolism and gene expression,” Journal of Integrative Plant Biology, vol. 50, no. 10, pp. 1268–1280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. M. A. Hossain, M. Z. Hossain, and M. Fujita, “Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene,” Australian Journal of Crop Science, vol. 3, no. 2, pp. 53–64, 2009. View at Google Scholar · View at Scopus
  3. M. A. Hossain, M. Hasanuzzaman, and M. Fujita, “Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress,” Physiology and Molecular Biology of Plants, vol. 16, no. 3, pp. 259–272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Rascio and F. Navari-Izzo, “Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?” Plant Science, vol. 180, no. 2, pp. 169–181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Villiers, C. Ducruix, V. Hugouvieux et al., “Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches,” Proteomics, vol. 11, no. 9, pp. 1650–1663, 2011. View at Publisher · View at Google Scholar
  6. G. Ramesh, Cloning and characterization of metallothionein genes of ectomycorrhizal fungus Hebeloma cylindrosporum, Ph.D. thesis, Thapar University, Punjab, India, 2008.
  7. P. Sharma and R. S. Dubey, “Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum,” Plant Cell Reports, vol. 26, no. 11, pp. 2027–2038, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. S. Sharma and K. J. Dietz, “The relationship between metal toxicity and cellular redox imbalance,” Trends in Plant Science, vol. 14, no. 1, pp. 43–50, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. A. Hossain and M. Fujita, “Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA,” Bioscience, Biotechnology and Biochemistry, vol. 73, no. 9, pp. 2007–2013, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. A. Hossain and M. Fujita, “Regulatory role of components of ascorbate-glutathione (AsA-GSH) pathway in plant tolerance to oxidative stress,” in Oxidative Stress in Plants: Causes, Consequences and Tolerance, N. A. Anjum, S. Umar, and A. Ahmed, Eds., IK International Publishing House Pvt. Ltd., New Delhi, India, 2011. View at Google Scholar
  11. M. A. Hossain, M. D. Hossain, M. M. Rohman, J. A. T. da Silva, and M. Fujita, “Onion major compounds (flavonoids, organosulfurs) and highly expressed glutathione-related enzymes: possible physiological interaction, gene cloning and abiotic stress response,” in Onion Consumption and Health, C. B. Aguirre and L. M. Jaramillo, Eds., Nova Science Publishers, New York, NY, USA, 2012. View at Google Scholar
  12. Y. F. Tan, N. O'Toole, N. L. Taylor, and A. Harvey Millar, “Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function,” Plant Physiology, vol. 152, no. 2, pp. 747–761, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. S. Dubey, “Metal toxicity, oxidative stress and antioxidative defense system in plants,” in Reactive Oxygen Species and Antioxidants in Higher Plants, S. D. Gupta, Ed., pp. 177–203, CRC Press, Boca Raton, Fla, USA, 2011. View at Google Scholar
  14. N. A. Anjum, I. Ahmad, I. Mohmood et al., “Modulation of glutathione and its related enzymes in plants' responses to toxic metals and metalloids-A review,” Environmental and Experimental Botany, vol. 75, pp. 307–324, 2012. View at Publisher · View at Google Scholar
  15. S. K. Yadav, S. L. Singla-Pareek, M. Ray, M. K. Reddy, and S. K. Sopory, “Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione,” Biochemical and Biophysical Research Communications, vol. 337, no. 1, pp. 61–67, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. S. K. Yadav, S. L. Singla-Pareek, M. K. Reddy, and S. K. Sopory, “Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress,” FEBS Letters, vol. 579, no. 27, pp. 6265–6271, 2005. View at Publisher · View at Google Scholar
  17. S. L. Singla-Pareek, S. K. Yadav, A. Pareek, M. K. Reddy, and S. K. Sopory, “Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils,” Plant Physiology, vol. 140, no. 2, pp. 613–623, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. A. Hoque, M. Uraji, M. N. Akhter Banu, I. C. Mori, Y. Nakamura, and Y. Murata, “The effects of methylglyoxal on glutathione S-transferase from Nicotiana tabacum,” Bioscience, Biotechnology and Biochemistry, vol. 74, no. 10, pp. 2124–2126, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. A. Hossain, J. A. T. da Silva, and M. Fujita, “Glyoxalase system and reactive oxygen species detoxification system in plant abiotic stress response and tolerance: an intimate relationship,” in Abiotic Stress in Plants-Mechanisms and Adaptations, A. K. Shanker and B. Venkateswarlu, Eds., pp. 235–266, INTECH-Open Access Publisher, Rijeka, Croatia, 2011. View at Google Scholar
  20. R. Saito, H. Yamamoto, A. Makino, T. Sugimoto, and C. Miyake, “Methylglyoxal functions as Hill oxidant and stimulates the photoreductin of O2 at photosystem I: a symptom of plant diabetes,” Plant, Cell and Environment, vol. 34, no. 9, pp. 1454–1464, 2011. View at Google Scholar
  21. F. Navari-Izzo, “Thylakoid-bound and stromal antioxidative enzymes in wheat treated with excess copper,” Physiologia Plantarum, vol. 104, no. 4, pp. 630–638, 1998. View at Publisher · View at Google Scholar
  22. M. C. Romero-Puertas, J. M. Palma, M. Gómez, L. A. Del Río, and L. M. Sandalio, “Cadmium causes the oxidative modification of proteins in pea plants,” Plant, Cell and Environment, vol. 25, no. 5, pp. 677–686, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Barconi, G. Bernardini, and A. Santucci, “Linking protein oxidation to environmental pollutants: redox proteome approaches,” Journal of Proteomics, vol. 74, no. 11, pp. 2324–2337, 2011. View at Publisher · View at Google Scholar
  24. G. Dalcorso, S. Farinati, and A. Furini, “Regulatory networks of cadmium stress in plants,” Plant Signaling and Behavior, vol. 5, no. 6, pp. 1–5, 2010. View at Google Scholar · View at Scopus
  25. C. Leyval, K. Turnau, and K. Haselwandter, “Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects,” Mycorrhiza, vol. 7, no. 3, pp. 139–153, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. C. S. Cobbett, “Phytochelatins and their roles in heavy metal detoxification,” Plant Physiology, vol. 123, no. 3, pp. 825–832, 2000. View at Google Scholar · View at Scopus
  27. J. L. Hall, “Cellular mechanisms for heavy metal detoxification and tolerance,” Journal of Experimental Botany, vol. 53, no. 366, pp. 1–11, 2002. View at Google Scholar · View at Scopus
  28. X. E. Yang, X. F. Jin, Y. Feng, and E. Islam, “Molecular mechanisms and genetic basis of heavy metal tolerance/hyperaccumulation in plants,” Journal of Integrative Plant Biology, vol. 47, no. 9, pp. 1025–1035, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Clemens, “Toxic metal accumulation, responses toexposure andmechanisms oftolerance inplants,” Biochimie, vol. 88, no. 11, pp. 1707–1719, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. K. Yadav, “Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants,” South African Journal of Botany, vol. 76, no. 2, pp. 167–179, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. C. S. Seth, T. Remans, E. Keunen et al., “Phytoextraction of toxic metals: a central role for glutathione,” Plant, Cell and Environment, vol. 35, no. 2, pp. 334–346, 2012. View at Publisher · View at Google Scholar
  32. K. J. Dietz, M. Bair, and U. Krämer, “Free radical and reactive oxygen species as mediators of heavy metal toxicity in plants,” in Heavy Metal Stress in Plants from Molecules to Ecosystems, M. N. V. Prasad and J. Hagemeyer, Eds., pp. 73–79, Spinger-Verlag, Berlin, Germany, 1999. View at Google Scholar
  33. A. Schützendübel and A. Polle, “Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization,” Journal of Experimental Botany, vol. 53, no. 372, pp. 1351–1365, 2002. View at Google Scholar · View at Scopus
  34. E. Nieboer and D. H. S. Richardson, “The replacement of the nondescript term %heavy metals' by a biologically and chemically significant classification of metal ions,” Environmental Pollution Series B: Chemical and Physical, vol. 1, no. 1, pp. 3–26, 1980. View at Publisher · View at Google Scholar · View at Scopus
  35. G. F. Wildner and J. Henkel, “The effect of divalent metal ions on the activity of Mg2+ depleted ribulose-1,5-bisphosphate oxygenase,” Planta, vol. 146, no. 2, pp. 223–228, 1979. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Van Assche and H. Clijsters, “Inhibition of photosynthesis in Phaseolus vulgaris by treatment with toxic concentration of zinc: effect on ribulose-1,5-bisphosphate carboxylase/oxygenase,” Journal of Plant Physiology, vol. 125, no. 3-4, pp. 355–360, 1986. View at Google Scholar · View at Scopus
  37. A. Rivetta, N. Negrini, and M. Cocucci, “Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination,” Plant, Cell and Environment, vol. 20, no. 5, pp. 600–608, 1997. View at Google Scholar · View at Scopus
  38. A. A. Meharg, “The role of plasmalemma in metal tolerance in angiosperm,” Physiologia Plantarum, vol. 88, no. 1, pp. 191–198, 1993. View at Publisher · View at Google Scholar
  39. M. A. Hossain and M. Fujita, “Evidence for a role of exogenous glycinebetaine and proline in antioxidant defense and methylglyoxal detoxification systems in mung bean seedlings under salt stress,” Physiology and Molecular Biology of Plants, vol. 16, no. 1, pp. 19–29, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. M. A. Hossain, M. Hasanuzzaman, and M. Fujita, “Coordinate induction of antioxidant defense and glyoxalase system by exogenous proline and glycinebetaine is correlated with salt tolerance in mung bean,” Frontiers of Agriculture in China, vol. 5, no. 1, pp. 1–14, 2011. View at Publisher · View at Google Scholar
  41. C. D. Foy, R. L. Chaney, and M. C. White, “Physiology of metal toxicity in plants,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 29, pp. 511–566, 1978. View at Publisher · View at Google Scholar
  42. L. M. Sandalio, H. C. Dalurzo, M. Gómez, M. C. Romero-Puertas, and L. A. Del Río, “Cadmium-induced changes in the growth and oxidative metabolism of pea plants,” Journal of Experimental Botany, vol. 52, no. 364, pp. 2115–2126, 2001. View at Google Scholar · View at Scopus
  43. P. Carrier, A. Baryla, and M. Havaux, “Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil,” Planta, vol. 216, no. 6, pp. 939–950, 2003. View at Google Scholar · View at Scopus
  44. E. Gamalero, G. Lingua, G. Berta, and B. R. Glick, “Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress,” Canadian Journal of Microbiology, vol. 55, no. 5, pp. 501–514, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Fodor, “Physiological responses of vascular plants to heavy metals,” in Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants, M. N. V. Prasad and K. Strzalka, Eds., pp. 149–177, Kluwer Academic, Dortrech, UK, 2002. View at Google Scholar
  46. C. Poschenrieder and J. Barceló, “Water relations in heavy metal stressed plants,” in Heavy Metal Stress in Plants, M. N. V. Prasad, Ed., pp. 249–270, Springer, Berlin, Germany, 3rd edition, 2004. View at Google Scholar
  47. M. P. Benavides, S. M. Gallego, and M. L. Tomaro, “Cadmium toxicity in plants,” Brazilian Journal of Plant Physiology, vol. 17, no. 1, pp. 21–34, 2005. View at Google Scholar · View at Scopus
  48. Y. T. Hsu and C. H. Kao, “Cadmium toxicity is reduced by nitric oxide in rice leaves,” Plant Growth Regulation, vol. 42, no. 3, pp. 227–238, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Backor, P. Vaczi, M. Bartak, J. Budova, and A. Dzubaj, “Uptake, photosynthetic characteristics and membrane lipid peroxidation levels in the lichen photobiont Trebouxia erici exposed to copper and cadmium,” Bryologist, vol. 110, no. 1, pp. 100–107, 2007. View at Publisher · View at Google Scholar
  50. B. Boddi, A. R. Oravecz, and E. Lehoczki, “Effect of cadmium on organization and photoreduction of protochlorophyllide in dark-grown leaves and etioplast inner membrane preparations of wheat,” Photosynthetica, vol. 31, no. 3, pp. 411–420, 1995. View at Google Scholar · View at Scopus
  51. K. Shakya, M. K. Chettri, and T. Sawidis, “Impact of heavy metals (copper, zinc, and lead) on the chlorophyll content of some mosses,” Archives of Environmental Contamination and Toxicology, vol. 54, no. 3, pp. 412–421, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. L. Perfus-Barbeoch, N. Leonhardt, A. Vavasseur, and C. Forestier, “Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status,” Plant Journal, vol. 32, no. 4, pp. 539–548, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. F. Vinit-Dunand, D. Epron, B. Alaoui-Sossé, and P. M. Badot, “Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants,” Plant Science, vol. 163, no. 1, pp. 53–58, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Llamas, C. I. Ullrich, and A. Sanz, “Cd2+ effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryza sativa L) roots,” Plant and Soil, vol. 219, no. 1-2, pp. 21–28, 2000. View at Google Scholar · View at Scopus
  55. A. Bhushan Jha and R. Shanker Dubey, “Arsenic exposure alters activity behaviour of key nitrogen assimilatory enzymes in growing rice plants,” Plant Growth Regulation, vol. 43, no. 3, pp. 259–268, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Sharma and R. S. Dubey, “Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant,” Journal of Plant Physiology, vol. 162, no. 8, pp. 854–864, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Maheshwari and R. S. Dubey, “Nickel toxicity inhibits ribonuclease and protease activities in rice seedlings: protective effects of proline,” Plant Growth Regulation, vol. 51, no. 3, pp. 231–243, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. K. S. Kasprzak, “Possible role of oxidative damage in metal-induced carcinogenesis,” Cancer Investigation, vol. 13, no. 4, pp. 411–430, 1995. View at Google Scholar · View at Scopus
  59. A. Fusconi, O. Repetto, E. Bona et al., “Effects of cadmium on meristem activity and nucleus ploidy in roots of Pisum sativum L. cv. Frisson seedlings,” Environmental and Experimental Botany, vol. 58, no. 1–3, pp. 253–260, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. W. H. O. Ernst, G. J. Krauss, J. A. C. Verkleij, and D. Wesenberg, “Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view,” Plant, Cell and Environment, vol. 31, no. 1, pp. 123–143, 2008. View at Publisher · View at Google Scholar
  61. J. Deikman, “Molecular mechanisms of ethylene regulation of gene transcription,” Physiologia Plantarum, vol. 100, no. 3, pp. 561–566, 1997. View at Publisher · View at Google Scholar · View at Scopus
  62. W. Maksymiec, “Effect of copper on cellular processes in higher plants,” Photosynthetica, vol. 34, no. 3, pp. 321–342, 1997. View at Publisher · View at Google Scholar · View at Scopus
  63. A. J. Enyedi, N. Yalpani, P. Silverman, and I. Raskin, “Signal molecules in systemic plant resistance to pathogens and pests,” Cell, vol. 70, no. 6, pp. 879–886, 1992. View at Publisher · View at Google Scholar · View at Scopus
  64. U. H. Cho and N. H. Seo, “Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation,” Plant Science, vol. 168, no. 1, pp. 113–120, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. E. Skórzyńska-Polit, B. Pawlikowska-Pawlęga, E. Szczuka, M. Drążkiewicz, and Z. Krupa, “The activity and localization of lipoxygenases in Arabidopsis thaliana under cadmium and copper stresses,” Plant Growth Regulation, vol. 48, no. 1, pp. 29–39, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. Zhen, J. L. Qi, S. S. Wang et al., “Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean,” Physiologia Plantarum, vol. 131, no. 4, pp. 542–554, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Zhao, Y.-L. Sun, and S.-X. Cui, “Cd-induced changes in leaf proteome of the hyperaccumulator plant Phytolacca americana,” Chemosphere, vol. 85, no. 1, pp. 56–66, 2011. View at Publisher · View at Google Scholar
  68. R. L. Sun, Q. X. Zhou, F. H. Sun, and C. X. Jin, “Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L,” Environmental and Experimental Botany, vol. 60, no. 3, pp. 468–476, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. C. Jonak, H. Nakagami, and H. Hirt, “Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium,” Plant Physiology, vol. 136, no. 2, pp. 3276–3283, 2004. View at Google Scholar · View at Scopus
  70. S. Clemens, M. G. Palmgren, and U. Krämer, “A long way ahead: understanding and engineering plant metal accumulation,” Trends in Plant Science, vol. 7, no. 7, pp. 309–315, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. A. A. Meharg, “Integrated tolerance mechanisms: constitutive and adaptive plant responses to elevated metal concentrations in the environment,” Plant, Cell and Environment, vol. 17, no. 9, pp. 989–993, 1994. View at Google Scholar · View at Scopus
  72. L. Sanità Di Toppi and R. Gabbrielli, “Response to cadmium in higher plants,” Environmental and Experimental Botany, vol. 41, no. 2, pp. 105–130, 1999. View at Publisher · View at Google Scholar · View at Scopus
  73. X. F. Zhu, C. Zheng, Y. T. Hu et al., “Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esulentum,” Plant, Cell and Environment, vol. 34, no. 7, pp. 1055–1064, 2011. View at Publisher · View at Google Scholar
  74. J. M. Bubb and J. N. Lester, “The impact of heavy metals on lowland rivers and the implications for man and the environment,” Science of the Total Environment, vol. 100, pp. 207–233, 1991. View at Google Scholar · View at Scopus
  75. D. M. Pellet, D. L. Grunes, and L. V. Kochian, “Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.),” Planta, vol. 196, no. 4, pp. 788–795, 1995. View at Google Scholar · View at Scopus
  76. A. P. Pinto, I. Simões, and A. M. Mota, “Cadmium impact on root exudates of sorghum and maize plants: a speciation study,” Journal of Plant Nutrition, vol. 31, no. 10, pp. 1746–1755, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. E. Delhaize, P. R. Ryan, and R. J. Randall, “Aluminum tolerance in wheat (Triticum aestivum L.). II.Aluminum-stimulated excretion of malic acid from root apices,” Plant Physiology, vol. 103, no. 3, pp. 695–702, 1993. View at Google Scholar · View at Scopus
  78. J. W. Huang, D. M. Pellet, L. A. Papernik, and L. V. Kochian, “Aluminum interactions with voltage-dependent calcium transport in plasma membrane vesicles isolated from roots of aluminum-sensitive and -resistant wheat cultivars,” Plant Physiology, vol. 110, no. 2, pp. 561–569, 1996. View at Google Scholar · View at Scopus
  79. C. C. Chen, J. B. Dixon, and F. T. Turner, “Iron coatings on rice roots: morphology and models of development,” Soil Science Society of America Journal, vol. 44, pp. 1113–1119, 1980. View at Google Scholar
  80. H. Liu, J. Zhang, P. Christie, and F. Zhang, “Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil,” Science of the Total Environment, vol. 394, no. 2-3, pp. 361–368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. N. Smirnoff and G. R. Stewart, “Nitrogen assimilation and zinc toxicity to zinc-tolerant and non-tolerant clones of Deschampsia cespitosa (L.) beauv,” New Phytologist, vol. 107, no. 4, pp. 671–680, 1987. View at Google Scholar · View at Scopus
  82. H. Harmens, N. G. C. P. B. Gusmão, P. R. D. Hartog, J. A. C. Verkeij, and W. H. O. Ernst, “Uptake and transport of zinc in zinc-sensitive and zinc-tolerant Silene vulgaris,” Journal of Plant Physiology, vol. 141, no. 3, pp. 309–315, 1993. View at Google Scholar
  83. K. R. Tice, D. R. Parker, and D. A. DeMason, “Operationally defined apoplastic and symplastic aluminum fractions in root tips of aluminum-intoxicated wheat,” Plant Physiology, vol. 100, no. 1, pp. 309–318, 1992. View at Google Scholar · View at Scopus
  84. K. Iwasaki, K. Sakurai, and E. Takahashi, “Copper binding by the root cell walls of Italian ryegrass and red clover,” Soil Science and Plant Nutrition, vol. 36, no. 3, pp. 431–439, 1990. View at Google Scholar
  85. W. J. Horst and H. Marschner, “Effect of excessive manganese supply on uptake and translocation of calcium in bean plants (Phaseolus vulgaris L.),” Zeitschrift fur Planzenphysiologie, vol. 87, no. 2-3, pp. 137–148, 1978. View at Google Scholar
  86. A. Masion and P. M. Bertsch, “Aluminium speciation in the presence of wheat root cell walls: a wet chemical study,” Plant, Cell and Environment, vol. 20, no. 4, pp. 504–512, 1997. View at Google Scholar · View at Scopus
  87. J. A. Qureshi, D. A. Thurman, K. Hardwick, and H. A. Collin, “Uptake and accumulation of zinc, lead and copper in zinc and lead tolerant Anthoxanthum odoratum L,” New Phytologist, vol. 100, no. 3, pp. 429–434, 1985. View at Google Scholar · View at Scopus
  88. D. M. Wheeler and I. L. Power, “Comparison of plant uptake and plant toxicity of various ions in wheat,” Plant and Soil, vol. 172, no. 2, pp. 167–173, 1995. View at Google Scholar · View at Scopus
  89. S. J. Zheng, J. F. Ma, and H. Matsumoto, “High aluminum resistance in buckwheat: I. Al-induced specific secretion of oxalic acid from root tips,” Plant Physiology, vol. 117, no. 3, pp. 745–751, 1998. View at Google Scholar · View at Scopus
  90. W. J. Horst, “Factors responsible for genotypic manganese tolerance in cowpea (Vigna unguiculata),” Plant and Soil, vol. 72, no. 2-3, pp. 213–218, 1983. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Clemens, “Molecular mechanisms of plant metal tolerance and homeostasis,” Planta, vol. 212, no. 4, pp. 475–486, 2001. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Brookes, J. C. Collins, and D. A. Thurman, “The mechanism of zinc tolerance in grasses,” Journal of Plant Nutrition, vol. 3, no. 1–4, pp. 695–705, 1981. View at Publisher · View at Google Scholar
  93. M. Lee, K. Lee, J. Lee, E. W. Noh, and Y. Lee, “AtPDR12 contributes to lead resistance in Arabidopsis,” Plant Physiology, vol. 138, no. 2, pp. 827–836, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. H. C. Chiang, J. C. Lo, and K. C. Yeh, “Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray,” Environmental Science and Technology, vol. 40, no. 21, pp. 6792–6798, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. U. Krämer, I. Talke, and M. Hanikenne, “Transition metal transport,” Federation of European Biochemical Societies Letters, vol. 581, no. 12, pp. 2263–2272, 2007. View at Google Scholar
  96. W. E. Rauser, “Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins,” Cell Biochemistry and Biophysics, vol. 31, no. 1, pp. 19–48, 1999. View at Google Scholar · View at Scopus
  97. A. Brune, W. Urbach, and K. J. Dietz, “Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance,” Plant, Cell and Environment, vol. 17, no. 2, pp. 153–162, 1994. View at Google Scholar · View at Scopus
  98. R. Vögeli-Lange and G. J. Wagner, “Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves: implication of a transport function for cadmium-binding peptides,” Plant Physiology, vol. 92, no. 4, pp. 1086–1093, 1990. View at Google Scholar · View at Scopus
  99. J. Wang, B. P. Evangelou, M. T. Nielsen, and G. J. Wagner, “Computer, simulated evaluation of possible mechanisms for sequestering metal ion activity in plant vacuoles: II. Zinc,” Plant Physiology, vol. 99, no. 2, pp. 621–626, 1992. View at Google Scholar · View at Scopus
  100. J. Wang, B. P. Evangelou, M. T. Nielsen, and G. J. Wagner, “Computer-simulated evaluation of possible mechanisms for quenching heavy metal ion activity in plant vacuoles: I. Cadmium,” Plant Physiology, vol. 97, no. 3, pp. 1154–1160, 1991. View at Google Scholar · View at Scopus
  101. M. H. Zenk, “Heavy metal detoxification in higher plants - A review,” Gene, vol. 179, no. 1, pp. 21–30, 1996. View at Publisher · View at Google Scholar · View at Scopus
  102. E. Grill, E. L. Winnacker, and M. H. Zenk, “Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 2, pp. 439–443, 1987. View at Google Scholar · View at Scopus
  103. E. Grill, S. Loffler, E. L. Winnacke, and M. H. Zenk, “Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase),” Proceeding of the National Academy of Science of the United States of America, vol. 86, no. 18, pp. 6838–6842, 1989. View at Google Scholar
  104. D. G. Mendoza-Cózatl, E. Butko, F. Springer et al., “Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation,” Plant Journal, vol. 54, no. 2, pp. 249–259, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Fujita, “The presence of two Cd-binding components in the roots of water hyacinth cultivated in a Cd2+-containing medium,” Plant Cell Physiology, vol. 26, no. 2, pp. 295–300, 1985. View at Google Scholar · View at Scopus
  106. M. Fujita and T. Kawanishi, “Purificatin and characterization of a Cd-binding complexes from the root tissues of various higher plants cultivated in Cd2+-containing medium,” Plant and Cell Physiology, vol. 27, no. 7, pp. 1317–1325, 1986. View at Google Scholar
  107. S. Iglesia-Turiño, A. Febrero, O. Jauregui, C. Caldelas, J. L. Araus, and J. Bort, “Detection and quantification of unbound phytochelatin 2 in plant extracts of Brassica napus grown with different levels of mercury,” Plant Physiology, vol. 142, no. 2, pp. 742–749, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. E. Grill, J. Thumann, E. L. Winnacker, and M. H. Zenk, “Induction of heavy-metal binding phytochelatins by inoculation of cell cultures in standard media,” Plant Cell Reports, vol. 7, no. 6, pp. 375–378, 1988. View at Google Scholar · View at Scopus
  109. J. Thumann, E. Grill, E. L. Winnacker, and M. H. Zenk, “Reactivation of metal-requiring apoenzymes by phytochelatin-metal complexes,” FEBS Letters, vol. 284, no. 1, pp. 66–69, 1991. View at Publisher · View at Google Scholar
  110. I. Nouairi, W. Ben Ammar, N. Ben Youssef, D. D. Ben Miled, M. H. Ghorbal, and M. Zarrouk, “Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress,” Acta Physiologiae Plantarum, vol. 31, no. 2, pp. 237–247, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. H. Zhang, W. Xu, J. Guo, Z. He, and M. Ma, “Coordinated responses of phytochelatins and metallothioneins to heavy metals in garlic seedlings,” Plant Science, vol. 169, no. 6, pp. 1059–1065, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. N. Tsuji, N. Hirayanagi, M. Okada et al., “Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis,” Biochemical and Biophysical Research Communications, vol. 293, no. 1, pp. 653–659, 2002. View at Publisher · View at Google Scholar · View at Scopus
  113. U. Krämer, J. D. Cotter-Howells, J. M. Charnock, A. J. M. Baker, and J. A. C. Smith, “Free histidine as a metal chelator in plants that accumulate nickel,” Nature, vol. 379, no. 6566, pp. 635–638, 1996. View at Publisher · View at Google Scholar · View at Scopus
  114. Z. G. Shen, F. J. Zhao, and S. P. McGrath, “Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum,” Plant, Cell and Environment, vol. 20, no. 7, pp. 898–906, 1997. View at Google Scholar · View at Scopus
  115. I. Leopold, D. Günther, J. Schmidt, and D. Neumann, “Phytochelatins and heavy metal tolerance,” Phytochemistry, vol. 50, no. 8, pp. 1323–1328, 1999. View at Publisher · View at Google Scholar · View at Scopus
  116. D. E. Salt and W. E. Rauser, “MgATP-dependent transport of phytochelatins across the tonoplast of oat roots,” Plant Physiology, vol. 107, no. 4, pp. 1293–1301, 1995. View at Google Scholar · View at Scopus
  117. A. J. M. Baker, S. P. McGrath, R. D. Reeves, and J. A. C. Smith, “Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremedation of metal polluted soils,” in Phytoremediation of Contaminated Soil and Water, N. Terry and G. Banuelos, Eds., pp. 85–107, Michael Lewis, Boca Raton, Fla, USA, 2000. View at Google Scholar
  118. D. H. Hamer, “Metallothionein,” Annual Review of Biochemistry, vol. 55, pp. 913–951, 1986. View at Google Scholar · View at Scopus
  119. K. Gasic and S. Korban, “Heavy metal stress,” in Physiology and Molecular Biology of Stress Tolerance in Plants, K. V. M. Rao, A. S. Raghavendra, and K. J. Reddy, Eds., pp. 219–254, Springer, Dordrecht, the Netherlands, 2006. View at Google Scholar
  120. G. Zhou, Y. Xu, J. Li, L. Yang, and J.-Y. Liu, “Molecular analyses of the metallothionein gene family in rice (Oryza sativa L.),” Journal of Biochemistry and Molecular Biology, vol. 39, no. 5, pp. 595–606, 2006. View at Google Scholar
  121. J. H. R. Kagi, “Overview of metallothionein,” Methods in Enzymology, vol. 205, pp. 613–626, 1991. View at Google Scholar · View at Scopus
  122. S. Castiglione, C. Franchin, T. Fossati, G. Lingua, P. Torrigiani, and S. Biondi, “High zinc concentrations reduce rooting capacity and alter metallothionein gene expression in white poplar (Populus alba L. cv. Villafranca),” Chemosphere, vol. 67, no. 6, pp. 1117–1126, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. Y. O. Ahn, S. H. Kim, J. Lee, H. R. Kim, H.-S. Lee, and S.-S. Kwak, “Three Brassica rapa metallothionein genes are differentially regulated under various stress conditions,” Molecular Biology Reports, vol. 39, no. 3, pp. 2059–2067, 2012. View at Google Scholar
  124. R. Jabeen, A. Ahmad, and M. Iqbal, “Phytoremediation of heavy metals: physiological and molecular mechanisms,” Botanical Review, vol. 75, no. 4, pp. 339–364, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. D. Singh and S. K. Chauhan, “Organic acids of crop plants in alumium detoxification,” Current Science, vol. 100, no. 10, pp. 1509–1515, 2011. View at Google Scholar
  126. J. Lee, R. D. Reeves, R. R. Brooks, and T. Jaffré, “Isolation and identification of a citrato-complex of nickel from nickel-accumulating plants,” Phytochemistry, vol. 16, no. 10, pp. 1503–1505, 1977. View at Google Scholar · View at Scopus
  127. J. Lee, R. D. Reeves, R. R. Brooks, and T. Jaffré, “The relation between nickel and citric acid in some nickel-accumulating plants,” Phytochemistry, vol. 17, no. 6, pp. 1033–1035, 1978. View at Google Scholar · View at Scopus
  128. S. C. Miyasaka, J. George Buta, R. K. Howell, and C. D. Foy, “Mechanism of aluminum tolerance in snapbeans: root exudation of citric acid,” Plant Physiology, vol. 96, no. 3, pp. 737–743, 1991. View at Google Scholar · View at Scopus
  129. G. J. Wagner, “Accumulation of Cadmium in Crop Plants And Its Consequences to Human Health,” Advances in Agronomy, vol. 51, no. C, pp. 173–212, 1993. View at Publisher · View at Google Scholar · View at Scopus
  130. D. L. Godbold, W. J. Horst, J. C. Collins, D. A. Thurman, and H. Marschner, “Accumulation of zinc and organic acids in roots of zinc tolerant and non-tolerant ecotypes of Deschampsia caespitosa,” International Journal of Plant Physiology, vol. 116, no. 1, pp. 59–69, 1984. View at Google Scholar · View at Scopus
  131. M. Oven, E. Grill, A. Golan-Goldhirsh, T. M. Kutchan, and M. H. Zenk, “Increase of free cysteine and citric acid in plant cells exposed to cobalt ions,” Phytochemistry, vol. 60, no. 5, pp. 467–474, 2002. View at Publisher · View at Google Scholar · View at Scopus
  132. J. F. Ma, P. R. Ryan, and E. Delhaize, “Aluminium tolerance in plants and the complexing role of organic acids,” Trends in Plant Science, vol. 6, no. 6, pp. 273–278, 2001. View at Publisher · View at Google Scholar · View at Scopus
  133. Jian Feng Ma, Shao Jian Zheng, H. Matsumoto, and S. Hiradate, “Detoxifying aluminium with buckwheat,” Nature, vol. 390, no. 6660, pp. 569–570, 1997. View at Google Scholar · View at Scopus
  134. S. Zheng, J. F. Ma, and H. Matsumoto, “High alumium resistance in buckwheat: I. Al induced specific secretion of oxalic acid from root tip tips,” Plant Physiology, vol. 117, no. 3, pp. 745–751, 1997. View at Google Scholar
  135. W. Mathys, “The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc-resistance in herbage plants,” Physiologia Plantarum, vol. 40, no. 2, pp. 130–136, 1977. View at Publisher · View at Google Scholar · View at Scopus
  136. W. H. Zhang, P. R. Ryan, and S. D. Tyerman, “Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots,” Plant Physiology, vol. 125, no. 3, pp. 1459–1472, 2001. View at Publisher · View at Google Scholar · View at Scopus
  137. F. S. Salazar, S. Pandey, L. Narro et al., “Diallel analysis of acid-soil tolerant and intolerant tropical maize populations,” Crop Science, vol. 37, no. 5, pp. 1457–1462, 1997. View at Google Scholar
  138. X. F. Li, J. F. Ma, and H. Matsumoto, “Pattern of aluminum-induced secretion of organic acids differs between rye and wheat,” Plant Physiology, vol. 123, no. 4, pp. 1537–1543, 2000. View at Google Scholar · View at Scopus
  139. V. K. Rai, “Role of amino acids in plant responses to stresses,” Biologia Plantarum, vol. 45, no. 4, pp. 481–487, 2002. View at Publisher · View at Google Scholar · View at Scopus
  140. D. E. Salt, R. C. Prince, A. J. M. Baker, I. Raskin, and I. J. Pickering, “Zinc legands in the metal hyperaccumulator Thalspi caerulescens as determined using X-absorption spectroscopy,” Environmental Science and Technology, vol. 33, no. 5, pp. 713–717, 1999. View at Google Scholar
  141. U. Krämer, J. D. Cotter-Howells, J. M. Charnock, A. J. M. Baker, and J. A. C. Smith, “Free histidine as a metal chelator in plants that accumulate nickel,” Nature, vol. 379, no. 6566, pp. 635–638, 1996. View at Publisher · View at Google Scholar · View at Scopus
  142. K. Wycisk, E. J. Kim, J. I. Schroeder, and U. Krämer, “Enhancing the first enzymatic step in the histidine biosynthesis pathway increases the free histidine pool and nickel tolerance in Arabidopsis thaliana,” FEBS Letters, vol. 578, no. 1-2, pp. 128–134, 2004. View at Publisher · View at Google Scholar
  143. K. Higuchi, K. Suzuki, H. Nakanishi, H. Yamaguchi, N. K. Nishizawa, and S. Mori, “Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores,” Plant Physiology, vol. 119, no. 2, pp. 471–479, 1999. View at Google Scholar · View at Scopus
  144. H. Q. Ling, G. Koch, H. Bäumlein, and M. W. Ganal, “Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 12, pp. 7098–7103, 1999. View at Publisher · View at Google Scholar · View at Scopus
  145. A. Pich, R. Manteuffel, S. Hillmer, G. Scholz, and W. Schmidt, “Fe homeostasis in plant cells: does nicotianamine play multiple roles in the regulation of cytoplasmic Fe concentration?” Planta, vol. 213, no. 6, pp. 967–976, 2001. View at Google Scholar · View at Scopus
  146. M. Takahashi, Y. Terada, I. Nakai et al., “Role of nicotianamine in the intracellular delivery of metals and plant reproductive development,” Plant Cell, vol. 15, no. 6, pp. 1263–1280, 2003. View at Google Scholar · View at Scopus
  147. M. Weber, E. Harada, C. Vess, E. V. Roepenack-Lahaye, and S. Clemens, “Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors,” Plant Journal, vol. 37, no. 2, pp. 269–281, 2004. View at Google Scholar · View at Scopus
  148. M. D. Vazquez, C. Poschenrieder, I. Corrales, and J. Barcelo, “Change in apoplastic aluminum during the initial growth response to aluminum by roots of a tolerant maize variety,” Plant Physiology, vol. 119, no. 2, pp. 435–444, 1999. View at Google Scholar
  149. R. F. M. van Steveninck, M. E. van Steveninck, D. R. Fernando, W. J. Horst, and H. Marschner, “Deposition of zinc phytate in globular bodies in roots of Deschampsia caespitosa; a detoxification mechanism?” Journal of Plant Physiology, vol. 131, no. 3-4, pp. 247–257, 1987. View at Google Scholar
  150. D. E. Salt, M. Blaylock, N. P. B. A. Kumar et al., “Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants,” Biotechnology, vol. 13, no. 5, pp. 468–474, 1995. View at Google Scholar · View at Scopus
  151. D. E. Salt and U. Krämer, “Mechanisms of metal hyperaccumulation in plants,” in Phytoremediation of Toxic Metals-Using Plants to Clean Up the Environment, I. Raskin and B. D. Ensley, Eds., pp. 231–246, Wiley, New York, NY, USA, 2000. View at Google Scholar
  152. N. S. Pence, P. B. Larsen, S. D. Ebbs et al., “The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 9, pp. 4956–4960, 2000. View at Publisher · View at Google Scholar · View at Scopus
  153. E. Lombi, F. J. Zhao, S. J. Dunham, and S. P. McGrath, “Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction,” Journal of Environmental Quality, vol. 30, no. 6, pp. 1919–1926, 2001. View at Google Scholar · View at Scopus
  154. M. M. Lasat, N. S. Pence, D. F. Garvin, S. D. Ebbs, and L. V. Kochian, “Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens,” Journal of Experimental Botany, vol. 51, no. 342, pp. 71–79, 2000. View at Google Scholar · View at Scopus
  155. E. Pilon-Smits and M. Pilon, “Phytoremediation of metals using transgenic plants,” Critical Reviews in Plant Sciences, vol. 21, no. 5, pp. 439–456, 2002. View at Google Scholar · View at Scopus
  156. N. von Wiren, S. Klair, S. Bansal et al., “Nicotinamide chelates both Fe III and Fe II. Implication of a transport function for cadmium-binding pepties,” Plant Physiology, vol. 119, no. 3, pp. 1107–1114, 1999. View at Google Scholar
  157. D. Neumann, O. Lichtenberger, D. Gunther, K. Tschiersch, and L. Nover, “Heat-shock proteins induce heavy-metal tolerance in higher plants,” Planta, vol. 194, no. 3, pp. 360–367, 1994. View at Google Scholar · View at Scopus
  158. D. Neumann, U. Zur Nieden, O. Lichtenberger, and I. Leopold, “How does Armeria maritima tolerate high heavy metal concentrations?” Journal of Plant Physiology, vol. 146, no. 5-6, pp. 704–717, 1995. View at Google Scholar · View at Scopus
  159. J. E. Sarry, L. Kuhn, C. Ducruix et al., “The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses,” Proteomics, vol. 6, no. 7, pp. 2180–2198, 2006. View at Publisher · View at Google Scholar · View at Scopus
  160. Y. Zhen, J. L. Qi, S. S. Wang et al., “Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean,” Physiologia Plantarum, vol. 131, no. 4, pp. 542–554, 2007. View at Publisher · View at Google Scholar · View at Scopus
  161. H. E. Ireland, S. J. Harding, G. A. Bonwick, M. Jones, C. J. Smith, and J. H. H. Williams, “Evaluation of heat shock protein 70 as a biomarker of environmental stress in Fucus serratus and Lemna minor,” Biomarkers, vol. 9, no. 2, pp. 139–155, 2004. View at Publisher · View at Google Scholar
  162. M. P. de Souza, E. A. H. Pilon-Smits, and N. Terry, “The physiology and biochemistry of selenium volatilization by plants,” in Phytoremediation of Toxic Metal-Using Plants to Clean up the Environment, I. Raskin and B. D. Ensley, Eds., pp. 171–190, Wiley, New York, NY, USA, 2000. View at Google Scholar
  163. C. M. Lytle, P. W. Lytle, N. Yang et al., “Reduction of Cr(VI) to Cr(III) by wetland plants: potential for in situ heavy metal detoxification,” Environmental Science and Technology, vol. 32, no. 20, pp. 3087–3093, 1998. View at Publisher · View at Google Scholar · View at Scopus
  164. N. J. Robinson, C. M. Procter, E. L. Connolly, and M. L. Guerinot, “A ferric-chelate reductase for iron uptake from soils,” Nature, vol. 397, no. 6721, pp. 694–697, 1999. View at Publisher · View at Google Scholar · View at Scopus
  165. N. Fusco, L. Micheletto, G. Dal Corso, L. Borgato, and A. Furini, “Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L,” Journal of Experimental Botany, vol. 56, no. 421, pp. 3017–3027, 2005. View at Publisher · View at Google Scholar · View at Scopus
  166. J. E. Van De Mortel, H. Schat, P. D. Moerland et al., “Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens,” Plant, Cell and Environment, vol. 31, no. 3, pp. 301–324, 2008. View at Publisher · View at Google Scholar · View at Scopus
  167. K. B. Singh, R. C. Foley, and L. Oñate-Sánchez, “Transcription factors in plant defense and stress responses,” Current Opinion in Plant Biology, vol. 5, no. 5, pp. 430–436, 2002. View at Publisher · View at Google Scholar · View at Scopus
  168. G. Noctor and C. H. Foyer, “Ascorbate and glutathione: keeping active oxygen under control,” Annual Review of Plant Biology, vol. 49, pp. 249–279, 1998. View at Google Scholar
  169. S. L. Singla-Pareek, M. K. Reddy, and S. K. Sopory, “Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 25, pp. 14672–14677, 2003. View at Publisher · View at Google Scholar · View at Scopus
  170. Q. Shi and Z. Zhu, “Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber,” Environmental and Experimental Botany, vol. 63, no. 1–3, pp. 317–326, 2008. View at Publisher · View at Google Scholar · View at Scopus
  171. Z. S. Zhou, K. Guo, A. A. Elbaz, and Z. M. Yang, “Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa,” Environmental and Experimental Botany, vol. 65, no. 1, pp. 27–34, 2009. View at Publisher · View at Google Scholar · View at Scopus
  172. J. L. Freeman, M. W. Persans, K. Nieman et al., “Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators W inside box sign,” Plant Cell, vol. 16, no. 8, pp. 2176–2191, 2004. View at Publisher · View at Google Scholar · View at Scopus
  173. A. Metwally, I. Finkemeier, M. Georgi, and K. J. Dietz, “Salicylic acid alleviates the cadmium toxicity in barley seedlings,” Plant Physiology, vol. 132, no. 1, pp. 272–281, 2003. View at Publisher · View at Google Scholar · View at Scopus
  174. Y. S. Wang, J. Wang, Z. M. Yang et al., “Salicylic acid modulates aluminum-induced oxidative stress in roots of Cassia tora,” Acta Botanica Sinica, vol. 46, no. 7, pp. 819–828, 2004. View at Google Scholar · View at Scopus
  175. R. Bassi and S. S. Sharma, “Changes in Proline Content Accompanying the Uptake of Zinc and Copper by Lemna minor,” Annals of Botany, vol. 72, no. 2, pp. 151–154, 1993. View at Publisher · View at Google Scholar · View at Scopus
  176. R. Bassi and S. S. Sharma, “Proline accumulation in wheat seedlings exposed to zinc and copper,” Phytochemistry, vol. 33, no. 6, pp. 1339–1342, 1993. View at Google Scholar · View at Scopus
  177. V. V. Talanova, A. F. Titov, and N. P. Boeva, “Effect of increasing concentrations of lead and cadmium on cucumber seedlings,” Biologia Plantarum, vol. 43, no. 3, pp. 441–444, 2000. View at Google Scholar · View at Scopus
  178. S. Siripornadulsil, S. Traina, D. P. S. Verma, and R. T. Sayre, “Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae,” Plant Cell, vol. 14, no. 11, pp. 2837–2847, 2002. View at Publisher · View at Google Scholar · View at Scopus
  179. G. Y. Huang, Y. S. Wang, C. C. Sun, J. D. Dong, and Z. X. Sun, “The effect of multiple heavy metals on ascorbate, glutathione and related enzymes in two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza),” Oceanological and Hydrobiological Studies, vol. 39, no. 1, pp. 11–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  180. S. S. Hussain, M. Ali, M. Ahmad, and K. H. M. Siddique, “Polyamines: natural and engineered abiotic and biotic stress tolerance in plants,” Biotechnology Advances, vol. 29, no. 3, pp. 300–311, 2011. View at Publisher · View at Google Scholar
  181. T. Kusano, T. Berberich, C. Tateda, and Y. Takahashi, “Polyamines: Essential factors for growth and survival,” Planta, vol. 228, no. 3, pp. 367–381, 2008. View at Publisher · View at Google Scholar · View at Scopus
  182. C. C. Lin and C. H. Kao, “Excess copper induces an accumulation of putrescine in rice leaves,” Botanical Bulletin of Academia Sinica, vol. 40, no. 3, pp. 213–218, 1999. View at Google Scholar · View at Scopus
  183. H. C. Ha, N. S. Sirisoma, P. Kuppusamy, J. L. Zweier, P. M. Woster, and R. A. Casero, “The natural polyamine spermine functions directly as a free radical scavenger,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 19, pp. 11140–11145, 1998. View at Publisher · View at Google Scholar · View at Scopus
  184. M. D. Groppa and M. P. Benavides, “Polyamines and abiotic stress: recent advances,” Amino Acids, vol. 34, no. 1, pp. 35–45, 2008. View at Publisher · View at Google Scholar · View at Scopus
  185. Y. Y. Leshem and P. J. C. Kuiper, “Is there a GAS (general adaptation syndrome) response to various types of environmental stress?” Biologia Plantarum, vol. 38, no. 1, pp. 1–18, 1996. View at Google Scholar · View at Scopus
  186. M. N. V. Prasad and K. Strzalka, “Impact of heavy metals on photosynthesis,” in Heavy Metal Stress in Plants, M. N. V. Prasad and J. Hagemeyer, Eds., pp. 117–138, Springer, Berlin, Germany, 1999. View at Google Scholar
  187. M. D. Groppa, M. S. Zawoznik, M. L. Tomaro, and M. P. Benavides, “Inhibition of root growth and polyamine metabolism in sunflower (Helianthus annuus) seedlings under cadmium and copper stress,” Biological Trace Element Research, vol. 126, no. 1–3, pp. 246–256, 2008. View at Publisher · View at Google Scholar · View at Scopus
  188. M. D. Groppa, E. P. Rosales, M. F. Iannone, and M. P. Benavides, “Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots,” Phytochemistry, vol. 69, no. 14, pp. 2609–2615, 2008. View at Publisher · View at Google Scholar · View at Scopus
  189. V. Prabhavathi and M. V. Rajam, “Mannitol-accumulating transgenic eggplants exhibit enhanced resistance to fungal wilts,” Plant Science, vol. 173, no. 1, pp. 50–54, 2007. View at Publisher · View at Google Scholar · View at Scopus
  190. X. P. Wen, X. M. Pang, N. Matsuda et al., “Inhibition of root growth and polyamine metabolism in sunflower (Helianthus annuus) seedlings under cadmium and copper stress over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers,” Transgenic Research, vol. 17, no. 2, pp. 251–263, 2008. View at Google Scholar
  191. C. Franchin, T. Fossati, E. Pasquini et al., “High concentrations of zinc and copper induce differential polyamine responses in micropropagated white poplar (Populus alba),” Physiologia Plantarum, vol. 130, no. 1, pp. 77–90, 2007. View at Publisher · View at Google Scholar · View at Scopus
  192. L. Lamattina, C. García-Mata, M. Graziano, and G. Pagnussat, “Nitric oxide: the versatility of an extensive signal molecule,” Annual Review of Plant Biology, vol. 54, pp. 109–136, 2003. View at Publisher · View at Google Scholar · View at Scopus
  193. L. A. Del Río, F. J. Corpas, and J. B. Barroso, “Nitric oxide and nitric oxide synthase activity in plants,” Phytochemistry, vol. 65, no. 7, pp. 783–792, 2004. View at Publisher · View at Google Scholar · View at Scopus
  194. M. C. Palmieri, S. Sell, X. Huang et al., “Nitric oxide-responsive genes and promoters in Arabidopsis thaliana: a bioinformatics approach,” Journal of Experimental Botany, vol. 59, no. 2, pp. 177–186, 2008. View at Publisher · View at Google Scholar · View at Scopus
  195. Q. Shi, F. Ding, X. Wang, and M. Wei, “Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress,” Plant Physiology and Biochemistry, vol. 45, no. 8, pp. 542–550, 2007. View at Publisher · View at Google Scholar · View at Scopus
  196. C. Zheng, D. Jiang, F. Liu et al., “Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity,” Environmental and Experimental Botany, vol. 67, no. 1, pp. 222–227, 2009. View at Publisher · View at Google Scholar · View at Scopus
  197. M. H. Siddiqui, M. H. Al-Whaibi, and M. O. Basalah, “Role of nitric oxide in tolerance of plants to abiotic stress,” Protoplasma, vol. 248, no. 3, pp. 447–455, 2011. View at Publisher · View at Google Scholar
  198. P. A. Karplus, M. J. Daniels, and J. R. Herriot, “Atomic structure of ferredoxin-NADPH C reductase, prototype for a structurally novel flavoenzyme family,” Science, vol. 251, no. 4989, pp. 60–66, 1999. View at Google Scholar
  199. J. Xu, W. Wang, J. Sun et al., “Involvement of auxin and nitric oxide in plant Cd-stress responses,” Plant and Soil, vol. 346, no. 1, pp. 107–119, 2011. View at Publisher · View at Google Scholar
  200. C. Xiumin, Z. Yikai, C. Xiuling, J. Hong, and W. Xiaobin, “Effects of exogenous nitric oxide protects tomato plants under copper stress,” in Proceedings of the 3rd International Conference on Bioinformatics and Biomedical Engineering (ICBBE '09), pp. 1–7, Beijing, China, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  201. J. Xu, H. Yin, and X. Li, “Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L,” Plant Cell Reports, vol. 28, no. 2, pp. 325–333, 2009. View at Publisher · View at Google Scholar · View at Scopus
  202. N. V. Laspina, M. D. Groppa, M. L. Tomaro, and M. P. Benavides, “Nitric oxide protects sunflower leaves against Cd-induced oxidative stress,” Plant Science, vol. 169, no. 2, pp. 323–330, 2005. View at Publisher · View at Google Scholar · View at Scopus
  203. K. Apel and H. Hirt, “Reactive oxygen species: metabolism, oxidative stress, and signal transduction,” Annual Review of Plant Biology, vol. 55, pp. 373–399, 2004. View at Publisher · View at Google Scholar · View at Scopus
  204. R. Mittler, S. Vanderauwera, M. Gollery, and F. Van Breusegem, “Reactive oxygen gene network of plants,” Trends in Plant Science, vol. 9, no. 10, pp. 490–498, 2004. View at Publisher · View at Google Scholar · View at Scopus
  205. A. Mhamdi, G. Queval, S. Chaouch, S. Vanderauwera, F. Van Breusegem, and G. Noctor, “Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models,” Journal of Experimental Botany, vol. 61, no. 15, pp. 4197–4220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  206. S. Takahashi and N. Murata, “How do environmental stresses accelerate photoinhibition?” Trends in Plant Science, vol. 13, no. 4, pp. 178–182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  207. T. Baszynski, L. Wajda, M. Król, D. Wolinska, Z. Krupa, and A. Tukendorf, “Photosynthetic activities of cadmium treated tomato plants,” Plant Physiology, vol. 98, no. 3, pp. 365–370, 1980. View at Publisher · View at Google Scholar
  208. N. Mohanty and P. Mohanty, “Cation effects on primary processes of photosynthesis,” in Advances in Frontier Areas of Plant Biochemistry, R. Singh and S. K. Sawheny, Eds., pp. 1–18, Prentice-Hall, Delhi, India, 1988. View at Google Scholar
  209. N. Atal, P. P. Saradhi, and P. Mohanty, “Inhibition of the chloroplast photochemical reactions by treatment of wheat seedlings with low concentrations of cadmium: analysis of electron transport activities and changes in fluorescence yield,” Plant and Cell Physiology, vol. 32, no. 7, pp. 943–951, 1991. View at Google Scholar · View at Scopus
  210. P. Faller, K. Kienzler, and A. Krieger-Liszkay, “Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of Photosystem II by competitive binding to the essential Ca2+ site,” Biochimica et Biophysica Acta, vol. 1706, no. 1-2, pp. 158–164, 2005. View at Publisher · View at Google Scholar · View at Scopus
  211. A. Krantev, R. Yordanova, T. Janda, G. Szalai, and L. Popova, “Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants,” Journal of Plant Physiology, vol. 165, no. 9, pp. 920–931, 2008. View at Publisher · View at Google Scholar · View at Scopus
  212. A. Siedlecka and T. BaszyńAski, “Inhibition of electron flow around photosystem I in chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency,” Physiologia Plantarum, vol. 87, no. 2, pp. 199–202, 1993. View at Google Scholar
  213. A. Siedlecka, G. Samuelsson, P. Gardenstrom, L. A. Kleczkowski, and Z. Krupa, “The activatory model of plant response to moderate cadmium stress-relationship between carbonic anhydrase and Rubisco,” in Photosynthesis: Mechanisms and Effects, G. Garab, Ed., pp. 2677–2680, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998. View at Google Scholar
  214. F. J. Corpas, J. B. Barroso, and L. A. Del Río, “Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells,” Trends in Plant Science, vol. 6, no. 4, pp. 145–150, 2001. View at Publisher · View at Google Scholar · View at Scopus
  215. L. A. Del Río, L. M. Sandalio, F. J. Corpas, J. M. Palma, and J. B. Barroso, “Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling,” Plant Physiology, vol. 141, no. 2, pp. 330–335, 2006. View at Publisher · View at Google Scholar · View at Scopus
  216. M. Rodríguez-Serrano, M. C. Romero-Puertas, I. Sparkes, C. Hawes, L. A. del Río, and L. M. Sandalio, “Peroxisome dynamics in Arabidopsis plants under oxidative stress induced by cadmium,” Free Radical Biology and Medicine, vol. 47, no. 11, pp. 1632–1639, 2009. View at Publisher · View at Google Scholar · View at Scopus
  217. M. C. Romero-Puertas, M. Rodríguez-Serrano, F. J. Corpas, M. Gómez, L. A. Del Río, and L. M. Sandalio, “Cadmium-induced subcellular accumulation of O2.- and H2O2 in pea leaves,” Plant, Cell and Environment, vol. 27, no. 9, pp. 1122–1134, 2004. View at Publisher · View at Google Scholar · View at Scopus
  218. O. Blokhina and K. Fagerstedt, “Oxidative stress and antioxidant defenses in plants,” in Oxidative Stress, Disease and Cancer, K. K. Singh, Ed., pp. 151–199, Imperial College Press, London, UK, 2006. View at Google Scholar
  219. E. Heyno, C. Klose, and A. Krieger-Liszkay, “Origin of cadmium-induced reactive oxygen species production: mitochondrial electron transfer versus plasma membrane NADPH oxidase,” New Phytologist, vol. 179, no. 3, pp. 687–699, 2008. View at Publisher · View at Google Scholar · View at Scopus
  220. Y. S. Wang, J. Wang, Z. M. Yang et al., “Salicylic acid modulates aluminum-induced oxidative stress in roots of Cassia tora,” Acta Botanica Sinica, vol. 46, no. 7, pp. 819–828, 2004. View at Google Scholar · View at Scopus
  221. F. Hao, X. Wang, and J. Chen, “Involvement of plasma-membrane NADPH oxidase in nickel-induced oxidative stress in roots of wheat seedlings,” Plant Science, vol. 170, no. 1, pp. 151–158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  222. M. Rodríguez-Serrano, M. C. Romero-Puertas, A. Zabalza et al., “Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo,” Plant, Cell and Environment, vol. 29, no. 8, pp. 1532–1544, 2006. View at Publisher · View at Google Scholar · View at Scopus
  223. B. Pourrut, G. Perchet, J. Silvestre, M. Cecchi, M. Guiresse, and E. Pinelli, “Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots,” Journal of Plant Physiology, vol. 165, no. 6, pp. 571–579, 2008. View at Publisher · View at Google Scholar · View at Scopus
  224. T. Remans, K. Opdenakker, K. Smeets, D. Mathijsen, J. Vangronsveld, and A. Cuypers, “Metal-specific and NADPH oxidase dependent changes in lipoxygenase and NADPH oxidase gene expression in Arabidopsis thaliana exposed to cadmium or excess copper,” Functional Plant Biology, vol. 37, no. 6, pp. 532–544, 2010. View at Publisher · View at Google Scholar · View at Scopus
  225. B. Halliwell, “Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life,” Plant Physiology, vol. 141, no. 2, pp. 312–322, 2006. View at Publisher · View at Google Scholar · View at Scopus
  226. C. H. Foyer and G. Noctor, “Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses,” Plant Cell, vol. 17, no. 7, pp. 1866–1875, 2005. View at Publisher · View at Google Scholar · View at Scopus
  227. T. S. Gechev, F. Van Breusegem, J. M. Stone, I. Denev, and C. Laloi, “Reactive oxygen species as signals that modulate plant stress responses and programmed cell death,” BioEssays, vol. 28, no. 11, pp. 1091–1101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  228. J. Espartero, I. Sanchez-Aguayo, and J. M. Pardo, “Molecular characterization of glyoxalase-I from a higher plant; Upregulation by stress,” Plant Molecular Biology, vol. 29, no. 6, pp. 1223–1233, 1995. View at Google Scholar · View at Scopus
  229. J. P. Richard, “Mechanism for the formation of methylglyoxal from triosephosphates,” Biochemical Society Transactions, vol. 21, no. 2, pp. 549–553, 1993. View at Google Scholar · View at Scopus
  230. S. K. Yadav, S. L. Singla-Pareek, M. K. Reddy, and S. K. Sopory, “Methylglyoxal detoxification by glyoxalase system: a survival strategy during environmental stresses,” Physiology and Molecular Biology of Plants, vol. 11, no. 1, pp. 1–11, 2005. View at Google Scholar · View at Scopus
  231. D. L. Pompliano, A. Peyman, and J. R. Knowles, “Stabilization of a reaction intermediate as a catalytic device: definition of the functional role of the flexible loop in triosephosphate isomerase,” Biochemistry, vol. 29, no. 13, pp. 3186–3194, 1990. View at Google Scholar · View at Scopus
  232. Veena, V. S. Reddy, and S. K. Sopory, “Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress,” Plant Journal, vol. 17, no. 4, pp. 385–395, 1999. View at Publisher · View at Google Scholar · View at Scopus
  233. Z. Y. Chen, R. L. Brown, K. E. Damann, and T. E. Cleveland, “Identification of a maize kernel stress-related protein and its effect on aflatoxin accumulation,” Phytopathology, vol. 94, no. 9, pp. 938–945, 2004. View at Google Scholar · View at Scopus
  234. M. N. Akhter Banu, M. A. Hoque, M. Watanabe-Sugimoto et al., “Proline and glycinebetaine ameliorated NaCl stress via scavenging of hydrogen peroxide and methylglyoxal but not superoxide or nitric oxide in tobacco cultured cells,” Bioscience, Biotechnology and Biochemistry, vol. 74, no. 10, pp. 2043–2049, 2010. View at Publisher · View at Google Scholar · View at Scopus
  235. S. Ray, S. Dutta, J. Halder, and M. Ray, “Inhibition of electron flow through complex I of the mitochondrial respiratory chain of Ehrlich ascites carcinoma cells by methylglyoxal,” Biochemical Journal, vol. 303, no. 1, pp. 69–72, 1994. View at Google Scholar · View at Scopus
  236. L. Wu and B. H. J. Juurlink, “Increased methylglyoxal and oxidative stress in hypertensive rat vascular smooth muscle cells,” Hypertension, vol. 39, no. 3, pp. 809–814, 2002. View at Publisher · View at Google Scholar · View at Scopus
  237. F. W. R. Chaplen, “Incidence and potential implications of the toxic metabolite methylglyoxal in cell culture: a review,” Cytotechnology, vol. 26, no. 3, pp. 173–183, 1998. View at Publisher · View at Google Scholar · View at Scopus
  238. K. M. Desai, T. Chang, H. Wang et al., “Oxidative stress and aging: is methylglyoxal the hidden enemy?” Canadian Journal of Physiology and Pharmacology, vol. 88, no. 3, pp. 273–284, 2010. View at Publisher · View at Google Scholar · View at Scopus
  239. S. Neill, R. Desikan, and J. Hancock, “Hydrogen peroxide signalling,” Current Opinion in Plant Biology, vol. 5, no. 5, pp. 388–395, 2002. View at Publisher · View at Google Scholar · View at Scopus
  240. P. J. Thornalley, “The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life,” Biochemical Journal, vol. 269, no. 1, pp. 1–11, 1990. View at Google Scholar · View at Scopus
  241. M. Saxena, R. Bisht, S. D. Roy, S. K. Sopory, and N. Bhalla-Sarin, “Cloning and characterization of a mitochondrial glyoxalase II from Brassica juncea that is upregulated by NaCl, Zn, and ABA,” Biochemical and Biophysical Research Communications, vol. 336, no. 3, pp. 813–819, 2005. View at Publisher · View at Google Scholar · View at Scopus
  242. M. A. Iannelli, F. Pietrini, L. Fiore, L. Petrilli, and A. Massacci, “Antioxidant response to cadmium in Phragmites australis plants,” Plant Physiology and Biochemistry, vol. 40, no. 11, pp. 977–982, 2002. View at Publisher · View at Google Scholar · View at Scopus
  243. R. Boominathan and P. M. Doran, “Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens,” Biotechnology and Bioengineering, vol. 83, no. 2, pp. 158–167, 2003. View at Publisher · View at Google Scholar · View at Scopus
  244. É. Darkó, H. Ambrus, É. Stefanovits-Bányai, J. Fodor, F. Bakos, and B. Barnabás, “Aluminum toxicity, aluminum tolerance and oxidative stress in an Al-sensitive wheat genotype and in Al-tolerant lines developed by in vitro microspore selection,” Plant Science, vol. 166, no. 3, pp. 583–591, 2004. View at Google Scholar
  245. N. Singh, L. Q. Ma, M. Srivastava, and B. Rathinasabapathi, “Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L and Pteris ensiformis L,” Plant Science, vol. 170, no. 2, pp. 274–282, 2006. View at Publisher · View at Google Scholar · View at Scopus
  246. X. Jin, X. Yang, E. Islam, D. Liu, and Q. Mahmood, “Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance,” Journal of Hazardous Materials, vol. 156, no. 1–3, pp. 387–397, 2008. View at Publisher · View at Google Scholar · View at Scopus
  247. X. Zeng, L. Q. Ma, R. Qiu, and Y. Tang, “Responses of non-protein thiols to Cd exposure in Cd hyperaccumulator Arabis paniculata Franch,” Environmental and Experimental Botany, vol. 66, no. 2, pp. 242–248, 2009. View at Publisher · View at Google Scholar · View at Scopus
  248. D. K. Gupta, H. G. Huang, X. E. Yang, B. H. N. Razafindrabe, and M. Inouhe, “The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione,” Journal of Hazardous Materials, vol. 177, no. 1–3, pp. 437–444, 2010. View at Publisher · View at Google Scholar · View at Scopus
  249. Q. Sun, Z. H. Ye, X. R. Wang, and M. H. Wong, “Increase of glutathione in mine population of Sedum alfredii: a Zn hyperaccumulator and Pb accumulator,” Phytochemistry, vol. 66, no. 21, pp. 2549–2556, 2005. View at Publisher · View at Google Scholar · View at Scopus
  250. A. Koprivova, S. Kopriva, D. Jäger, B. Will, L. Jouanin, and H. Rennenberg, “Evaluation of transgenic poplars over-expressing enzymes of glutathione synthesis for phytoremediation of cadmium,” Plant Biology, vol. 4, no. 6, pp. 664–670, 2002. View at Publisher · View at Google Scholar · View at Scopus
  251. R. A. Larson, “The antioxidants of higher plants,” Phytochemistry, vol. 27, no. 4, pp. 969–978, 1988. View at Google Scholar · View at Scopus
  252. C. Herschbach and H. Rennenberg, “Significance of phloem-translocated organic sulfur compounds for the regulation of sulfur nutrition,” Progress in Botany, vol. 62, pp. 177–193, 2001. View at Google Scholar
  253. R. Blum, A. Beck, A. Korte et al., “Function of phytochelatin synthase in catabolism of glutathione-conjugates,” Plant Journal, vol. 49, no. 4, pp. 740–749, 2007. View at Publisher · View at Google Scholar · View at Scopus
  254. G. Noctor, “Metabolic signalling in defence and stress: the central roles of soluble redox couples,” Plant, Cell and Environment, vol. 29, no. 3, pp. 409–425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  255. A. S. Gupta, R. G. Alscher, and D. McCune, “Response of photosynthesis and cellular antioxidants to ozone in Populus leaves,” Plant Physiology, vol. 96, no. 2, pp. 650–655, 1991. View at Google Scholar · View at Scopus
  256. M. J. May and C. J. Leaver, “Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures,” Plant Physiology, vol. 103, no. 2, pp. 621–627, 1993. View at Google Scholar · View at Scopus
  257. K. A. Marrs, “The functions and regulation of glutathione S-transferases in plants,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 47, no. 1, pp. 127–158, 1996. View at Google Scholar · View at Scopus
  258. M. J. May, T. Vernoux, C. Leaver, M. Van Montagu, and D. Inzé, “Glutathione homeostasis in plants: implications for environmental sensing and plant development,” Journal of Experimental Botany, vol. 49, no. 321, pp. 649–667, 1998. View at Google Scholar · View at Scopus
  259. S. Qadir, M. I. Qureshi, S. Javed, and M. Z. Abdin, “Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress,” Plant Science, vol. 167, no. 5, pp. 1171–1181, 2004. View at Publisher · View at Google Scholar · View at Scopus
  260. N. A. Anjum, S. Umar, A. Ahmad, M. Iqbal, and N. A. Khan, “Ontogenic variation in response of Brassica campestris L. to cadmium toxicity,” Journal of Plant Interactions, vol. 3, no. 3, pp. 189–198, 2008. View at Publisher · View at Google Scholar · View at Scopus
  261. A. Schützendübel, P. Nikolova, C. Rudolf, and A. Polle, “Cadmium and H2O2-induced oxidative stress in Populus x canescens roots,” Plant Physiology and Biochemistry, vol. 40, no. 6–8, pp. 577–584, 2002. View at Publisher · View at Google Scholar · View at Scopus
  262. E. Grill, E. L. Winnacker, and M. H. Zenk, “Phytochelatins: the principal heavy-metal complexing peptides of higher plants,” Science, vol. 230, no. 4726, pp. 674–676, 1985. View at Google Scholar · View at Scopus
  263. F. Pietrini, M. A. Iannelli, S. Pasqualini, and A. Massacci, “Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex steudel,” Plant Physiology, vol. 133, no. 2, pp. 829–837, 2003. View at Publisher · View at Google Scholar · View at Scopus
  264. Z. S. Zhou, S. J. Wang, and Z. M. Yang, “Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants,” Chemosphere, vol. 70, no. 8, pp. 1500–1509, 2008. View at Publisher · View at Google Scholar · View at Scopus
  265. G. Y. Huang, Y. S. Wang, C. C. Sun, J. D. Dong, and Z. X. Sun, “The effect of multiple heavy metals on ascorbate, glutathione and related enzymes in two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza),” Oceanological and Hydrobiological Studies, vol. 39, no. 1, pp. 11–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  266. J. Hartley-Whitaker, G. Ainsworth, and A. A. Meharg, “Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity,” Plant, Cell and Environment, vol. 24, no. 7, pp. 713–722, 2001. View at Publisher · View at Google Scholar · View at Scopus
  267. N. Verbruggen, C. Hermans, and H. Schat, “Mechanisms to cope with arsenic or cadmium excess in plants,” Current Opinion in Plant Biology, vol. 12, no. 3, pp. 364–372, 2009. View at Publisher · View at Google Scholar · View at Scopus
  268. S. Mishra, S. Srivastava, R. D. Tripathi, and P. K. Trivedi, “Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L,” Aquatic Toxicology, vol. 86, no. 2, pp. 205–215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  269. G. Innocenti, C. Pucciariello, M. Le Gleuher et al., “Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots,” Planta, vol. 225, no. 6, pp. 1597–1602, 2007. View at Publisher · View at Google Scholar · View at Scopus
  270. J. B. Barroso, F. J. Corpas, A. Carreras et al., “Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress,” Journal of Experimental Botany, vol. 57, no. 8, pp. 1785–1793, 2006. View at Publisher · View at Google Scholar · View at Scopus
  271. J. Xiong, G. Fu, L. Tao, and C. Zhu, “Roles of nitric oxide in alleviating heavy metal toxicity in plants,” Archives of Biochemistry and Biophysics, vol. 497, no. 1-2, pp. 13–20, 2010. View at Publisher · View at Google Scholar · View at Scopus
  272. D. P. Dixon and R. Edwards, “Glutathione transferases,” in The Arabidopsis Book, vol. 8, The American Society of Plant Biologists, Austin, Tex, USA, 2010. View at Publisher · View at Google Scholar
  273. M. Z. Hossain and M. Fujita, “Purification of a phi-type glutathione S-transferase from pumpkin flowers, and molecular cloning of its cDNA,” Bioscience, Biotechnology and Biochemistry, vol. 66, no. 10, pp. 2068–2076, 2002. View at Google Scholar · View at Scopus
  274. M. Fujita and M. Z. Hossain, “Molecular cloning of cDNAs for three tau-type glutathione S-transferases in pumpkin (Cucurbita maxima) and their expression properties,” Physiologia Plantarum, vol. 117, no. 1, pp. 85–92, 2003. View at Publisher · View at Google Scholar · View at Scopus
  275. M. Fujita and M. Z. Hossain, “Modulation of pumpkin glutathione S-transferases by aldehydes and related compounds,” Plant and Cell Physiology, vol. 44, no. 5, pp. 481–490, 2003. View at Publisher · View at Google Scholar · View at Scopus
  276. M. Z. Hossain, M. D. Hossain, and M. Fujita, “Induction of pumpkin glutathione S-transferases by different stresses and its possible mechanisms,” Biologia Plantarum, vol. 50, no. 2, pp. 210–218, 2006. View at Publisher · View at Google Scholar · View at Scopus
  277. M. Z. Hossain, J. A. T. da Silva, and M. Fujita, “Differential roles of glutathione S-transferase in oxidative stress modulation,” in Floriculture, Ornamental and Plant Biotechnology. Advances and Topical Issues, J. A. T. da Silva, Ed., pp. 108–116, Global Science Books Ltd, London, UK, 2006. View at Google Scholar
  278. E. Skórzyńska-Polit, M. Drążkiewicz, and Z. Krupa, “The activity of the antioxidative system in cadmium-treated Arabidopsis thaliana,” Biologia Plantarum, vol. 47, no. 1, pp. 71–78, 2004. View at Publisher · View at Google Scholar · View at Scopus
  279. J. W. Gronwald and K. L. Plaisance, “Isolation and characterization of glutathione S-transferase isozymes from sorghum,” Plant Physiology, vol. 117, no. 3, pp. 877–892, 1998. View at Google Scholar · View at Scopus
  280. J. D. Hayes, J. U. Flanagan, and I. R. Jowsey, “Glutathione transferases,” Annual Review of Pharmacology and Toxicology, vol. 45, pp. 51–88, 2005. View at Publisher · View at Google Scholar · View at Scopus
  281. Y. Hu, Y. Ge, C. Zhang, T. Ju, and W. Cheng, “Cadmium toxicity and translocation in rice seedlings are reduced by hydrogen peroxide pretreatment,” Plant Growth Regulation, vol. 59, no. 1, pp. 51–61, 2009. View at Publisher · View at Google Scholar · View at Scopus
  282. L. Halusková, K. Valentovicová, J. Huttová, I. Mistrík, and L. Tamás, “Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips,” Plant Physiology and Biochemistry, vol. 47, no. 11-12, pp. 1069–1074, 2009. View at Publisher · View at Google Scholar
  283. M. M. Rohman, M. S. Uddin, and M. Fujita, “Up-regulation of onion bulb glutathione S (GSTs) by abiotic stresses: a comparative study between two differently sensitive GSTs to their physiological inhibitors,” Plant OMICS, vol. 3, no. 1, pp. 28–34, 2010. View at Google Scholar
  284. R. Szollosi, I. S. Varga, L. Erdei, and E. Mihalik, “Cadmium-induced oxidative stress and antioxidative mechanisms in germinating Indian mustard (Brassica juncea L.) seeds,” Ecotoxicology and Environmental Safety, vol. 72, no. 5, pp. 1337–1342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  285. C. H. ZHANG and Y. GE, “Response of glutathione and glutathione S-transferase in rice seedlings exposed to cadmium stress,” Rice Science, vol. 15, no. 1, pp. 73–76, 2008. View at Publisher · View at Google Scholar · View at Scopus
  286. E. Gajewska and M. Skłodowska, “Differential biochemical responses of wheat shoots and roots to nickel stress: antioxidative reactions and proline accumulation,” Plant Growth Regulation, vol. 54, no. 2, pp. 179–188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  287. A. M. Reddy, S. G. Kumar, G. Jyothsnakumari, S. Thimmanaik, and C. Sudhakar, “Lead induced changes in antioxidant metabolism of horse gram (Macrotyloma uniflorum (Lam.) Verdc.) and bengal gram (Cicer arietinum L.),” Chemosphere, vol. 60, no. 1, pp. 97–104, 2005. View at Google Scholar
  288. C. Gullner, M. Uotila, and T. Kömives, “Responses of glutathione and glutathione S-transferase to cadmium and mercury exposure in pedunculate oak (Quercus robur) leaf discs,” Botanica Acta, vol. 111, no. 1, pp. 62–65, 1998. View at Google Scholar · View at Scopus
  289. I. Cakman and W. J. Horst, “Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max L.),” Physiologia Plantarum, vol. 83, no. 3, pp. 463–468, 1991. View at Google Scholar
  290. K. A. Marrs and V. Walbot, “Expression and RNA splicing of the maize glutathione S-transferase Bronze2 gene is regulated by cadmium and other stresses,” Plant Physiology, vol. 113, no. 1, pp. 93–102, 1997. View at Google Scholar · View at Scopus
  291. P. Dixit, P. K. Mukherjee, V. Ramachandran, and S. Eapen, “Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum,” PLoS ONE, vol. 6, no. 1, Article ID e16360, 2011. View at Publisher · View at Google Scholar
  292. C. H. Foyer and G. Noctor, “Ascorbate and glutathione: the heart of the redox hub,” Plant Physiology, vol. 155, no. 1, pp. 2–18, 2011. View at Publisher · View at Google Scholar
  293. C. H. Foyer and G. Noctor, “Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context,” Plant, Cell and Environment, vol. 28, no. 8, pp. 1056–1071, 2005. View at Publisher · View at Google Scholar · View at Scopus
  294. A. Cuypers, J. Vangronsveld, and H. Clijsters, “Peroxidases in roots and primary leaves of Phaseolus vulgaris Copper and Zinc phytotoxicity: a comparison,” Journal of Plant Physiology, vol. 159, no. 8, pp. 869–876, 2002. View at Google Scholar · View at Scopus
  295. R. A. Fatima and M. Ahmad, “Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater,” Science of the Total Environment, vol. 346, no. 1–3, pp. 256–273, 2005. View at Publisher · View at Google Scholar · View at Scopus
  296. B. Semane, A. Cuypers, K. Smeets et al., “Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system,” Physiologia Plantarum, vol. 129, no. 3, pp. 519–528, 2007. View at Publisher · View at Google Scholar · View at Scopus
  297. S. Srivastava, A. K. Srivastava, P. Suprasanna, and S. F. D'souza, “Comparative antioxidant profiling of tolerant and sensitive varieties of Brassica juncea L. to arsenate and arsenite exposure,” Bulletin of Environmental Contamination and Toxicology, vol. 84, no. 3, pp. 342–346, 2010. View at Publisher · View at Google Scholar · View at Scopus
  298. S. Srivastava, S. Mishra, R. D. Tripathi, S. Dwivedi, P. K. Trivedi, and P. K. Tandon, “Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle,” Environmental Science and Technology, vol. 41, no. 8, pp. 2930–2936, 2007. View at Publisher · View at Google Scholar · View at Scopus
  299. M. Gupta, P. Sharma, N. B. Sarin, and A. K. Sinha, “Differential response of arsenic stress in two varieties of Brassica juncea L,” Chemosphere, vol. 74, no. 9, pp. 1201–1208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  300. H. Hartikainen, T. L. Kue, and V. Piironem, “Selenium as an antioxidant and prooxidant in rye grass,” Plant and Soil, vol. 225, no. 1-2, pp. 193–200, 2000. View at Google Scholar
  301. M. M. A. Boojar and F. Goodarzi, “The copper tolerance strategies and the role of antioxidative enzymes in three plant species grown on copper mine,” Chemosphere, vol. 67, no. 11, pp. 2138–2147, 2007. View at Publisher · View at Google Scholar · View at Scopus
  302. P. Aravind and M. N. V. Prasad, “Cadmium-Zinc interactions in a hydroponic system using Ceratophyllum demersum L.: adaptive ecophysiology, biochemistry and molecular toxicology,” Brazilian Journal of Plant Physiology, vol. 17, no. 1, pp. 3–20, 2005. View at Google Scholar · View at Scopus
  303. K. Asada, “The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons,” Annual Review of Plant Biology, vol. 50, pp. 601–639, 1999. View at Google Scholar
  304. Z. Chen, T. E. Young, J. Ling, S. C. Chang, and D. R. Gallie, “Increasing vitamin C content of plants through enhanced ascorbate recycling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 6, pp. 3525–3530, 2003. View at Publisher · View at Google Scholar · View at Scopus
  305. F. Chen, F. Wang, F. Wu, W. Mao, G. Zhang, and M. Zhou, “Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance,” Plant Physiology and Biochemistry, vol. 48, no. 8, pp. 663–672, 2010. View at Publisher · View at Google Scholar · View at Scopus
  306. A. Paradiso, R. Berardino, M. C. De Pinto et al., “Increase in ascorbate-glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants,” Plant and Cell Physiology, vol. 49, no. 3, pp. 362–374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  307. R. Maheshwari and R. S. Dubey, “Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings,” Plant Growth Regulation, vol. 59, no. 1, pp. 37–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  308. L. M. Cervilla, B. Blasco, J. J. Ríos, L. Romero, and J. M. Ruiz, “Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity,” Annals of Botany, vol. 100, no. 4, pp. 747–756, 2007. View at Publisher · View at Google Scholar · View at Scopus
  309. L. Yin, S. Wang, A. E. Eltayeb et al., “Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to Aluminum stress in transgenic Tobacco,” Planta, vol. 231, no. 3, pp. 609–621, 2010. View at Publisher · View at Google Scholar · View at Scopus
  310. F. Y. Zhao, W. Liu, and S. Y. Zhang, “Different responses of plant growth and antioxidant system to the combination of cadmium and heat stress in transgenic and non-transgenic rice,” Journal of Integrative Plant Biology, vol. 51, no. 10, pp. 942–950, 2009. View at Publisher · View at Google Scholar · View at Scopus
  311. C. H. Foyer and B. Halliwell, “The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism,” Planta, vol. 133, no. 1, pp. 21–25, 1976. View at Publisher · View at Google Scholar · View at Scopus
  312. H. R. Lascano, L. M. Casano, M. N. Melchiorre, and V. S. Trippi, “Biochemical and molecular characterisation of wheat chloroplastic glutathione reductase,” Biologia Plantarum, vol. 44, no. 4, pp. 509–516, 2001. View at Publisher · View at Google Scholar · View at Scopus
  313. D. Contour-Ansel, M. L. Torres-Franklin, M. H. Cruz De Carvalho, A. D'Arcy-Lameta, and Y. Zuily-Fodil, “Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment,” Annals of Botany, vol. 98, no. 6, pp. 1279–1287, 2006. View at Publisher · View at Google Scholar · View at Scopus
  314. M. C. Romero-Puertas, F. J. Corpas, L. M. Sandalio et al., “Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme,” New Phytologist, vol. 170, no. 1, pp. 43–52, 2006. View at Publisher · View at Google Scholar · View at Scopus
  315. N. A. Anjum, S. Umar, M. Iqbal, and N. A. Khan, “Cadmium causes oxidative stress in moongbean [Vigna radiata (L.) Wilczek] by affecting antioxidant enzyme systems and ascorbate-glutathione cycle metabolism,” Russian Journal of Plant Physiology, vol. 58, no. 1, pp. 92–99, 2011. View at Google Scholar
  316. S. Srivastava, S. Mishra, R. D. Tripathi, S. Dwivedi, and D. K. Gupta, “Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle,” Aquatic Toxicology, vol. 80, no. 4, pp. 405–415, 2006. View at Publisher · View at Google Scholar · View at Scopus
  317. M. Israr and S. V. Sahi, “Antioxidative responses to mercury in the cell cultures of Sesbania drummondii,” Plant Physiology and Biochemistry, vol. 44, no. 10, pp. 590–595, 2006. View at Publisher · View at Google Scholar · View at Scopus
  318. M. Russo, C. Sgherri, R. Izzo, and F. Navari-Izzo, “Brassica napus subjected to copper excess: phospholipases C and D and glutathione system in signalling,” Environmental and Experimental Botany, vol. 62, no. 3, pp. 238–246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  319. R. K. Tewari, P. Kumar, and P. N. Sharma, “Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants,” Planta, vol. 223, no. 6, pp. 1145–1153, 2006. View at Publisher · View at Google Scholar · View at Scopus
  320. S. Verma and R. S. Dubey, “Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants,” Plant Science, vol. 164, no. 4, pp. 645–655, 2003. View at Publisher · View at Google Scholar · View at Scopus
  321. M. D. Hossain, M. M. Rohman, and M. Fujita, “Comparative investigation of glutathione S-transferases, glyoxalase I and allinase activities in different vegetable crops,” Journal of Crop Science and Biotechnology, vol. 10, no. 1, pp. 21–28, 2007. View at Google Scholar
  322. M. Tuomainen, V. Ahonen, S. O. Karenlampi et al., “Characterization of the glyoxalase 1 gene TcGLX1 in the metal hyperaccumulator plant Thlaspi caerulescens,” Planta, vol. 233, no. 6, pp. 1173–1184, 2011. View at Google Scholar
  323. H. El-Shabrawi, B. Kumar, T. Kaul, M. K. Reddy, S. L. Singla-Pareek, and S. K. Sopory, “Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice,” Protoplasma, vol. 245, no. 1, pp. 85–96, 2010. View at Publisher · View at Google Scholar · View at Scopus
  324. M. K. Maiti, S. Krishnasamy, H. A. Owen, and C. A. Makaroff, “Molecular characterization of glyoxalase II from Arabidopsis thaliana,” Plant Molecular Biology, vol. 35, no. 4, pp. 471–481, 1997. View at Publisher · View at Google Scholar · View at Scopus
  325. T. M. Zang, D. A. Hollman, P. A. Crawford, M. W. Crowder, and C. A. Makaroff, “Arabidopsis glyoxalase II contains a zinc/iron binuclear metal center that is essential for substrate binding and catalysis,” Journal of Biological Chemistry, vol. 276, no. 7, pp. 4788–4795, 2001. View at Publisher · View at Google Scholar
  326. S. K. Yadav, S. L. Singla-Pareek, and S. K. Sopory, “An overview on the role of methylglyoxal and glyoxalases in plants,” Drug Metabolism and Drug Interactions, vol. 23, no. 1-2, pp. 51–68, 2008. View at Google Scholar · View at Scopus
  327. M. A. Hoque, M. N. A. Banu, Y. Nakamura, Y. Shimoishi, and Y. Murata, “Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells,” Journal of Plant Physiology, vol. 165, no. 8, pp. 813–824, 2008. View at Publisher · View at Google Scholar · View at Scopus
  328. M. A. Hoque, Banu M. N. A., E. Okuma et al., “Exogenous proline and glycinebetaine ingresses NaCl-induced ascorbate-glutathione cycle enzyme activities and proline improves salt tolerance more than glycinebetaine in tobacco Bright yellow-2 suspension-cultured cells,” Journal of Plant Physiology, vol. 164, no. 5, pp. 553–561, 2007. View at Google Scholar
  329. Y. Y. Chao, Y. T. Hsu, and C. H. Kao, “Involvement of glutathione in heat shock- and hydrogen peroxide-induced cadmium tolerance of rice (Oryza sativa L.) seedlings,” Plant and Soil, vol. 318, no. 1-2, pp. 37–45, 2009. View at Publisher · View at Google Scholar · View at Scopus
  330. C. F. Tang, Y. G. Liu, G. M. Zeng et al., “Effects of exogenous spermidine on antioxidant system responses of Typha latifolia L. under Cd2+ stress,” Journal of Integrative Plant Biology, vol. 47, no. 4, pp. 428–434, 2005. View at Publisher · View at Google Scholar · View at Scopus
  331. A. Levine, R. Tenhaken, R. Dixon, and C. Lamb, “H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response,” Cell, vol. 79, no. 4, pp. 583–593, 1994. View at Publisher · View at Google Scholar · View at Scopus
  332. T. K. Prasad, M. D. Anderson, B. A. Martin, and C. R. Stewart, “Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide,” Plant Cell, vol. 6, no. 1, pp. 65–74, 1994. View at Publisher · View at Google Scholar · View at Scopus
  333. F. J. Xu, C. W. Jin, W. J. Liu, Y. S. Zhang, and X. Y. Lin, “Pretreatment with H2O2 alleviates aluminum-induced oxidative stress in wheat seedlings,” Journal of Integrative Plant Biology, vol. 53, no. 1, pp. 44–53, 2011. View at Publisher · View at Google Scholar
  334. R. K. Tewari, E. J. Hahn, and K. Y. Paek, “Modulation of copper toxicity-induced oxidative damage by nitric oxide supply in the adventitious roots of Panax ginseng,” Plant Cell Reports, vol. 27, no. 1, pp. 171–181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  335. N. Ahsan, J. Renaut, and S. Komatsu, “Recent developments in the application of proteomics to the analysis of plant responses to heavy metals,” Proteomics, vol. 9, no. 10, pp. 2602–2621, 2009. View at Publisher · View at Google Scholar · View at Scopus
  336. K. Kosová, P. Vítámvás, I. T. Prášil, and J. Renaut, “Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response,” Journal of Proteomics, vol. 74, no. 8, pp. 1301–1322, 2011. View at Publisher · View at Google Scholar
  337. K. Lee, D. W. Bae, S. H. Kim et al., “Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium,” Journal of Plant Physiology, vol. 167, no. 3, pp. 161–168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  338. Y. Wang, Y. Qian, H. Hu, Y. Xu, and H. Zhang, “Comparative proteomic analysis of Cd-responsive proteins in wheat roots,” Acta Physiologiae Plantarum, pp. 1–9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  339. N. Ahsan, D. G. Lee, I. Alam et al., “Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress,” Proteomics, vol. 8, no. 17, pp. 3561–3576, 2008. View at Publisher · View at Google Scholar · View at Scopus
  340. R. A. Ingle, J. A. C. Smith, and L. J. Sweetlove, “Responses to nickel in the proteome of the hyperaccumulator plant Alyssum lesbiacum,” BioMetals, vol. 18, no. 6, pp. 627–641, 2005. View at Publisher · View at Google Scholar · View at Scopus
  341. M. Labra, E. Gianazza, R. Waitt et al., “Zea mays L. protein changes in response to potassium dichromate treatments,” Chemosphere, vol. 62, no. 8, pp. 1234–1244, 2006. View at Publisher · View at Google Scholar · View at Scopus
  342. M. H. Tuomainen, N. Nunan, S. J. Lehesranta et al., “Multivariate analysis of protein profiles of metal hyperaccumulator Thlaspi caerulescens accessions,” Proteomics, vol. 6, no. 12, pp. 3696–3706, 2006. View at Publisher · View at Google Scholar · View at Scopus
  343. N. Ahsan, D. G. Lee, S. H. Lee et al., “Excess copper induced physiological and proteomic changes in germinating rice seeds,” Chemosphere, vol. 67, no. 6, pp. 1182–1193, 2007. View at Publisher · View at Google Scholar · View at Scopus
  344. Y. Zhen, J. L. Qi, S. S. Wang et al., “Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean,” Physiologia Plantarum, vol. 131, no. 4, pp. 542–554, 2007. View at Publisher · View at Google Scholar · View at Scopus
  345. Q. Yang, Y. Wang, J. Zhang, W. Shi, C. Qian, and X. Peng, “Identification of aluminum-responsive proteins in rice roots by a proteomic approach: cysteine synthase as a key player in Al response,” Proteomics, vol. 7, no. 5, pp. 737–749, 2007. View at Publisher · View at Google Scholar · View at Scopus
  346. C. Ortega-Villasante, L. E. Hernández, R. Rellán-Álvarez, F. F. Del Campo, and R. O. Carpena-Ruiz, “Rapid alteration of cellular redox homeostasis upon exposure to cadmium and mercury in alfalfa seedlings,” New Phytologist, vol. 176, no. 1, pp. 96–107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  347. P. Mohanpuria, N. K. Rana, and S. K. Yadav, “Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze,” Environmental Toxicology, vol. 22, no. 4, pp. 368–374, 2007. View at Publisher · View at Google Scholar · View at Scopus
  348. C. Xiang and D. J. Oliver, “Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis,” Plant Cell, vol. 10, no. 9, pp. 1539–1550, 1998. View at Publisher · View at Google Scholar · View at Scopus
  349. I. Ogawa, H. Nakanishi, S. Mori, and N. K. Nishizawa, “Time course analysis of gene regulation under cadmium stress in rice,” Plant and Soil, vol. 325, no. 1, pp. 97–108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  350. P. D. B. Adamis, D. S. Gomes, M. L. C. C. Pinto, A. D. Panek, and E. C. A. Eleutherio, “The role of glutathione transferases in cadmium stress,” Toxicology Letters, vol. 154, no. 1-2, pp. 81–88, 2004. View at Publisher · View at Google Scholar · View at Scopus
  351. S. K. Panda and H. Matsumoto, “Changes in antioxidant gene expression and induction of oxidative stress in pea (Pisum sativum L.) under Al stress,” BioMetals, vol. 23, no. 4, pp. 753–762, 2010. View at Publisher · View at Google Scholar · View at Scopus
  352. H. Luo, H. Li, X. Zhang, and J. Fu, “Antioxidant responses and gene expression in perennial ryegrass (Lolium perenne L.) under cadmium stress,” Ecotoxicology, vol. 20, no. 4, pp. 770–778, 2011. View at Publisher · View at Google Scholar
  353. K. Smeets, J. Ruytinx, B. Semane et al., “Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress,” Environmental and Experimental Botany, vol. 63, no. 1–3, pp. 1–8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  354. P. Goupil, D. Souguir, E. Ferjani, O. Faure, A. Hitmi, and G. Ledoigt, “Expression of stress-related genes in tomato plants exposed to arsenic and chromium in nutrient solution,” Journal of Plant Physiology, vol. 166, no. 13, pp. 1446–1452, 2009. View at Publisher · View at Google Scholar · View at Scopus
  355. S. Heiss, A. Wachter, J. Bogs, C. Cobbett, and T. Rausch, “Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure,” Journal of Experimental Botany, vol. 54, no. 389, pp. 1833–1839, 2003. View at Publisher · View at Google Scholar · View at Scopus
  356. D. Gonzalez-Mendoza, A. Q. Moreno, and O. Zapata-Perez, “Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper,” Aquatic Toxicology, vol. 83, no. 4, pp. 306–314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  357. K. Akashi, N. Nishimura, Y. Ishida, and A. Yokota, “Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon,” Biochemical and Biophysical Research Communications, vol. 323, no. 1, pp. 72–78, 2004. View at Publisher · View at Google Scholar · View at Scopus
  358. H. Zhang, W. Xu, J. Guo, Z. He, and M. Ma, “Coordinated responses of phytochelatins and metallothioneins to heavy metals in garlic seedlings,” Plant Science, vol. 169, no. 6, pp. 1059–1065, 2005. View at Publisher · View at Google Scholar · View at Scopus
  359. D. Duressa, K. Soliman, and D. Chen, “Identification of aluminum responsive genes in Al-tolerant soybean line PI 416937,” International Journal of Plant Genomics, vol. 2010, Article ID 164862, 13 pages, 2010. View at Publisher · View at Google Scholar
  360. F. Lin, J. Xu, J. Shi, H. Li, and B. Li, “Molecular cloning and characterization of a novel glyoxalase I gene TaGly I in wheat (Triticum aestivum L.),” Molecular Biology Reports, vol. 37, no. 2, pp. 729–735, 2010. View at Publisher · View at Google Scholar · View at Scopus
  361. L. Lanfranco, A. Bolchi, E. C. Ros, S. Ottonello, and P. Bonfante, “Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus,” Plant Physiology, vol. 130, no. 1, pp. 58–67, 2002. View at Publisher · View at Google Scholar · View at Scopus
  362. F. Ouziad, U. Hildebrandt, E. Schmelzer, and H. Bothe, “Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress,” Journal of Plant Physiology, vol. 162, no. 6, pp. 634–649, 2005. View at Publisher · View at Google Scholar · View at Scopus
  363. S. Perotto and E. Martino, “Molecular and cellular mechanisms of heavy metal tolerance in mycorrhizal fungi: what perspectives for bioremediation?” Minerva Biotecnologica, vol. 13, no. 1, pp. 55–63, 2001. View at Google Scholar · View at Scopus
  364. U. Galli, H. Schuepp, and C. Brunold, “Heavy metal binding by mycorrhizal fungi,” Physiologia Plantarum, vol. 92, no. 2, pp. 364–368, 1994. View at Publisher · View at Google Scholar · View at Scopus
  365. Y. Guo, E. George, and H. Marschner, “Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants,” Plant and Soil, vol. 184, no. 2, pp. 195–205, 1996. View at Google Scholar · View at Scopus
  366. U. Hildebrandt, M. Regvar, and H. Bothe, “Arbuscular mycorrhiza and heavy metal tolerance,” Phytochemistry, vol. 68, no. 1, pp. 139–146, 2007. View at Publisher · View at Google Scholar · View at Scopus
  367. K. Turnau, P. Ryszka, V. Gianinazzi-Pearson, and D. Van Tuinen, “Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in southern Poland,” Mycorrhiza, vol. 10, no. 4, pp. 169–174, 2001. View at Publisher · View at Google Scholar · View at Scopus
  368. N. Weyens, S. Truyens, E. Saenen et al., “Endophytes and their potential to deal with co-contamination of organic contaminants (toluene) and toxic metals (nickel) during phytoremediation,” International Journal of Phytoremediation, vol. 13, no. 3, pp. 244–255, 2011. View at Publisher · View at Google Scholar
  369. C. L. Rugh, “Genetically engineered phytoremediation: one man's trash is another man's transgene,” Trends in Biotechnology, vol. 22, no. 10, pp. 496–498, 2004. View at Publisher · View at Google Scholar · View at Scopus
  370. Y. P. Tong, R. Kneer, and Y. G. Zhu, “Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation,” Trends in Plant Science, vol. 9, no. 1, pp. 7–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  371. S. L. Doty, “Enhancing phytoremediation through the use of transgenics and endophytes,” New Phytologist, vol. 179, no. 2, pp. 318–333, 2008. View at Publisher · View at Google Scholar · View at Scopus
  372. J. R. Domínguez-Solís, M. C. López, F. J. Ager, M. D. Ynsa, L. C. Romero, and C. Gotor, “Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana,” Plant Biotechnology Journal, vol. 2, no. 6, pp. 469–476, 2004. View at Publisher · View at Google Scholar · View at Scopus
  373. Y. L. Zhu, E. A. H. Pilon-Smits, L. Jouanin, and N. Terry, “Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance,” Plant Physiology, vol. 119, no. 1, pp. 73–79, 1999. View at Google Scholar
  374. Y. L. Zhu, E. A. H. Pilon-Smits, A. S. Tarun, S. U. Weber, L. Jouanin, and N. Terry, “Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase,” Plant Physiology, vol. 121, no. 4, pp. 1169–1177, 1999. View at Google Scholar · View at Scopus
  375. G. Noctor, M. Strohm, L. Jouanin, K. J. Kunert, C. H. Foyer, and H. Rennenberg, “Synthesis of glutathione in leaves of transgenic poplar overexpressing γ-glutamylcysteine synthetase,” Plant Physiology, vol. 112, no. 3, pp. 1071–1078, 1996. View at Google Scholar · View at Scopus
  376. G. Creissen, P. Broadbent, R. Stevens, A. R. Wellburn, and P. Mullineaux, “Manipulation of glutathione metabolism in transgenic plants,” Biochemical Society Transactions, vol. 24, no. 2, pp. 465–469, 1996. View at Google Scholar · View at Scopus
  377. S. Reisinger, M. Schiavon, N. Terry, and E. A. H. Pilon-Smits, “Heavy metal tolerance and accumulation in Indian mustard (Brassica juncea L.) expressing bacterial γ-glutamylcysteine synthetase or glutathione synthetase,” International Journal of Phytoremediation, vol. 10, no. 5, pp. 440–454, 2008. View at Publisher · View at Google Scholar · View at Scopus
  378. L. A. Ivanova, D. A. Ronzhina, L. A. Ivanov, L. V. Stroukova, A. D. Peuke, and H. Rennenberg, “Over-expression of gsh1 in the cytosol affects the photosynthetic apparatus and improves the performance of transgenic poplars on heavy metal-contaminated soil,” Plant Biology, vol. 13, no. 4, pp. 649–659, 2011. View at Publisher · View at Google Scholar
  379. Y. Li, A. C. P. Heaton, L. Carreira, and R. B. Meagher, “Enhanced tolerance to and accumulation of mercury, but not arsenic, in plants overexpressing two enzymes required for thiol peptide synthesis,” Physiologia Plantarum, vol. 128, no. 1, pp. 48–57, 2006. View at Publisher · View at Google Scholar · View at Scopus
  380. M. Pomponi, V. Censi, V. di Girolamo et al., “Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot,” Planta, vol. 223, no. 2, pp. 180–190, 2006. View at Publisher · View at Google Scholar
  381. K. Gasic and S. S. Korban, “Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn,” Planta, vol. 225, no. 5, pp. 1277–1285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  382. J. L. Couselo, J. Navarro-Avino, and A. Ballester, “Expression of the phytochelatin synthase TaPCS1 in transgenic aspen, insight into the problems and qualities in phytoremediation of Pb,” International Journal of Phytoremediation, vol. 12, no. 4, pp. 358–370, 2010. View at Publisher · View at Google Scholar · View at Scopus
  383. S. Wojas, S. Clemens, A. Sklodowska, and D. M. Antosiewicz, “Arsenic response of AtPCS1-and CePCS-expressing plants—effects of external As(V) concentration on As-accumulation pattern and NPT metabolism,” Journal of Plant Physiology, vol. 167, no. 3, pp. 169–175, 2010. View at Publisher · View at Google Scholar
  384. G.-Y. Liu, Y.-X. Zhang, and T.-Y. Chai, “Phytochelatin synthase of Thlaspi caerulescens enhanced tolerance and accumulation of heavy metals when expressed in yeast and tobacco,” Plant Cell Reports, vol. 30, no. 6, pp. 1067–1076, 2011. View at Publisher · View at Google Scholar
  385. Y. Li, O. P. Dhankher, L. Carreira et al., “Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity,” Plant and Cell Physiology, vol. 45, no. 12, pp. 1787–1797, 2004. View at Google Scholar · View at Scopus
  386. J. Guo, X. Dai, W. Xu, and M. Ma, “Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana,” Chemosphere, vol. 72, no. 7, pp. 1020–1026, 2008. View at Publisher · View at Google Scholar · View at Scopus
  387. S. Misra and L. Gedamu, “Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants,” Theoretical and Applied Genetics, vol. 78, no. 2, pp. 161–168, 1989. View at Google Scholar
  388. K. Sekhar, B. Priyanka, V. D. Reddy, and K. V. Rao, “Metallothionein 1 (CcMT1) of pigeon pea (Cajanus cajan, L.) confers enhanced tolerance to copper and cadmium in Escherichia coli and Arabidopsis thaliana,” Environmental and Experimental Botany, vol. 72, no. 2, pp. 131–139, 2011. View at Google Scholar
  389. G. S. Sanghera, P. L. Kashyap, G. Singh, and J. A. T. da Silva, “Transgenics: fast track to plant stress amelioration,” Transgenic Plant Journal, vol. 5, no. 1, pp. 1–26, 2011. View at Google Scholar
  390. C.-J. Ruan and J. A. T. da Silva, “Metabolomics: creating new potentials for unraveling the mechanisms in response to salt and drought stress and for the biotechnological improvement of xero-halophytes,” Critical Reviews in Biotechnology, vol. 31, no. 2, pp. 153–169, 2011. View at Publisher · View at Google Scholar
  391. S. S. Gill, N. A. Khan, N. K. Anjum, and N. Tuteja, “Amelioration of cadmium stress in crop plants by nutrients management: morphological, physiological and biochemical aspects,” Plant Stress, vol. 5, no. 1, pp. 1–23, 2011. View at Google Scholar