Table of Contents
Journal of Biomarkers
Volume 2013, Article ID 810395, 8 pages
http://dx.doi.org/10.1155/2013/810395
Research Article

Association between a Tetranucleotide Repeat Polymorphism of SPAG16 Gene and Cataract in Male Children

1School of Public Health and Psychiatry Institute, University of Illinois, 1601 West Taylor Street, 306N Chicago, IL 60612, USA
2Biological Sciences Department, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. District, Hyderabad 500078, India
3Department of Paediatric Ophthalmology and Strabismus, Dr. Shroff's Charity Eye Hospital, 5027 Kedar Nath Road, Daryaganj, New Delhi 110 002, India

Received 22 May 2012; Accepted 13 August 2012

Academic Editor: Ranju Ralhan

Copyright © 2013 Shipra Mehra et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Dandona, C. E. Gilbert, J. S. Rahi, and G. N. Rao, “Planning to reduce childhood blindness in India,” Indian Journal of Ophthalmology, vol. 46, no. 2, pp. 117–122, 1998. View at Google Scholar · View at Scopus
  2. S. Merin, “Inherited cataracts,” in Inherited Eye Diseases: Diagnosis and Clinical Management, pp. 86–88, Marcel Decker, New York, NY, USA, 1991. View at Google Scholar
  3. A. Shiels, T. M. Bennett, and J. F. Hejtmancik, “Cat-Map: putting cataract on the map,” Molecular Vision, vol. 16, pp. 2007–2015, 2010. View at Google Scholar · View at Scopus
  4. S. Mehra, S. Kapur, and A. R. Vasavada, “Polymorphism of the CRYGA and CRYGB genes among Indians patients with pediatric cataract,” Journal of Postgraduate Medicine, vol. 57, no. 3, pp. 201–205, 2011. View at Google Scholar
  5. E. Nandrot, C. Slingsby, A. Basak et al., “Gamma-D crystallin gene (CRYGD) mutation causes autosomal dominant congenital cerulean cataracts,” Journal of Medical Genetics, vol. 40, no. 4, pp. 262–267, 2003. View at Google Scholar · View at Scopus
  6. S. K. Iyengar, B. E. K. Klein, R. Klein et al., “Identification of a major locus for age-related cortical cataract on chromosome 6p12-q12 in the Beaver Dam Eye Study,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 40, pp. 14485–14490, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. D. S. Mackay, U. P. Andley, and A. Shiels, “A missense mutation in the γD crystallin gene (CRYGD) associated with autosomal dominant “coral-like” cataract linked to chromosome 2q,” Molecular Vision, vol. 10, pp. 155–162, 2004. View at Google Scholar · View at Scopus
  8. E. I. Rogaev, E. A. Rogaeva, G. I. Korovaitseva et al., “Linkage of polymorphic congenital cataract to the γ-crystallin gene locus on human chromosome 2q33–35,” Human Molecular Genetics, vol. 5, no. 5, pp. 699–703, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. D. A. Stephan, E. Gillanders, D. Vanderveen et al., “Progressive juvenile-onset punctate cataracts caused by mutation of the γD-crystallin gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 3, pp. 1008–1012, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Shentu, K. Yao, W. Xu, S. Zheng, S. Hu, and X. Gong, “Special fasciculiform cataract caused by a mutation in the γD-crystallin gene,” Molecular Vision, vol. 10, pp. 233–239, 2004. View at Google Scholar · View at Scopus
  11. F. Li, S. Wang, C. Gao et al., “Mutation G61C in the CRYGD gene causing autosomal dominant congenital coralliform cataracts,” Molecular Vision, vol. 14, pp. 378–386, 2008. View at Google Scholar · View at Scopus
  12. L. Y. Zhang, B. Gong, J. P. Tong et al., “A novel γD-crystallin mutation causes mild changes in protein properties but leads to congenital coralliform cataract,” Molecular Vision, vol. 15, pp. 1521–1529, 2009. View at Google Scholar · View at Scopus
  13. G. Van Buggenhout, C. Van Ravenswaaij-Arts, N. Mc Maas et al., “The del(2)(q32.2q33) deletion syndrome defined by clinical and molecular characterization of four patients,” European Journal of Medical Genetics, vol. 48, no. 3, pp. 276–289, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. T. M. Chen, P. L. Kuo, C. H. Hsu et al., “Microsatellite in the 3' untranslated region of human fibroblast growth factor 9 (FGF9) gene exhibits pleiotropic effect on modulating FGF9 protein expression,” Human Mutation, vol. 28, no. 1, p. 98, 2007. View at Google Scholar · View at Scopus
  15. D. R. Nagarkatti-Gude, R. Jaimez, S. C. Henderson, M. E. Teves, Z. Zhang, and J. F. Strauss, “Spag16, an axonemal central apparatus gene, encodes a male germ cell nuclear speckle protein that regulates SPAG16 mRNA expression,” PLoS ONE, vol. 6, no. 5, Article ID e20625, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Zhang, M. A. Zariwala, M. M. Mahadevan et al., “A heterozygous mutation disrupting the SPAG16 gene results in biochemical instability of central apparatus components of the human sperm axoneme,” Biology of Reproduction, vol. 77, no. 5, pp. 864–871, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. Zhang, X. Shen, B. H. Jones, B. Xu, J. C. Herr, and Strauss III, “Phosphorylation of mouse sperm axoneme central apparatus protein SPAG16L by a testis-specific kinase, TSSK2,” Biology of Reproduction, vol. 79, no. 1, pp. 75–83, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Zhibing, S. Xuening, D. R. Gude et al., “MEIG1 is essential for spermiogenesis in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 40, pp. 17055–17060, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Merin, Congenital Cataracts, Little Brown, Boston, Mass, USA, 1974.
  20. S. Kapur, S. Mehra, D. Gajjar et al., “Analysis of single nucleotide polymorphisms of CRYGA and CRYGB genes in control population of western Indian origin,” Indian Journal of Ophthalmology, vol. 57, no. 3, pp. 197–201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Mehra, S. Kapur, S. Mittal, and P. K. Sehgal, “Common genetic link between metabolic syndrome components and senile cataract,” Free Radical Research, vol. 46, no. 2, pp. 133–1140, 2012. View at Google Scholar
  22. Sun Wei Guo and E. A. Thompson, “Performing the exact test of Hardy-Weinberg proportion for multiple alleles,” Biometrics, vol. 48, no. 2, pp. 361–372, 1992. View at Publisher · View at Google Scholar · View at Scopus
  23. R. R. Devi, W. Yao, P. Vijayalakshmi, Y. V. Sergeev, P. Sundaresan, and J. F. Hejtmancik, “Crystallin gene mutations in Indian families with inherited pediatric cataract,” Molecular Vision, vol. 14, pp. 1157–1170, 2008. View at Google Scholar · View at Scopus
  24. K. P. Burdon, M. G. Wirth, D. A. Mackey et al., “Investigation of crystallin genes in familial cataract, and report of two disease associated mutations,” British Journal of Ophthalmology, vol. 88, no. 1, pp. 79–83, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Hansen, A. Mikkelsen, P. Nürnberg et al., “Comprehensive mutational screening in a cohort of danish families with hereditary congenital cataract,” Investigative Ophthalmology and Visual Science, vol. 50, no. 7, pp. 3291–3303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. L. Beem, E. J. C. De Geus, J. J. Hottenga et al., “Combined linkage and association analyses of the 124-bp allele of marker D2S2944 with anxiety, depression, neuroticism and major depression,” Behavior Genetics, vol. 36, no. 1, pp. 127–136, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Etminan, F. S. Mikelberg, and J. M. Brophy, “Selective serotonin reuptake inhibitors and the risk of cataracts. A Nested Case-Control Study,” Ophthalmology, vol. 117, no. 6, pp. 1251–1255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Kapoor, S. Kapur, and L. C. Dhaka, “D2S2944 marker: a common marker for the obesity-depression associations,” Journal of Mental Health and Human Behaviour, vol. 15, pp. 24–30, 2010. View at Google Scholar
  29. B. S. Maher, H. B. Hughes III, W. N. Zubenko, and G. S. Zubenko, “Genetic linkage of region containing the CREB1 gene to depressive disorders in families with recurrent, early-onset, major depression: a re-analysis and confirmation of sex-specific effect,” American Journal of Medical Genetics B, vol. 153, no. 1, pp. 10–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. S. M. Mirkin, “Expandable DNA repeats and human disease,” Nature, vol. 447, no. 7147, pp. 932–940, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Zhang, I. Kostetskii, S. B. Moss et al., “Haploinsufficiency for the murine orthologue of Chlamydomonas PF20 disrupts spermatogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 35, pp. 12946–12951, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. J. K. Sun, T. Iwata, J. S. Zigler Jr., and D. A. Carper, “Differential gene expression in male and female rat lenses undergoing cataract induction by transforming growth factor-β (TGF-β),” Experimental Eye Research, vol. 70, no. 2, pp. 169–181, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Siliņa, P. Zayakin, Z. Kalniņa et al., “Sperm-associated antigens as targets for cancer immunotherapy: expression pattern and humoral immune response in cancer patients,” Journal of Immunotherapy, vol. 34, no. 1, pp. 28–44, 2011. View at Publisher · View at Google Scholar · View at Scopus