Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomarkers
Volume 2013 (2013), Article ID 960862, 7 pages
http://dx.doi.org/10.1155/2013/960862
Research Article

Immunoreactivity of Pluripotent Markers SSEA-5 and L1CAM in Human Tumors, Teratomas, and Induced Pluripotent Stem Cells

1Center for Hearing and Deafness, University at Buffalo, 3435 Main Street, Cary 137 Buffalo, NY 14214, USA
2Indiana University, Department of Biology, Indianapolis, IN 46202, USA
3Mount Sinai, Genetics and Genomic Sciences, New York, NY 10029, USA

Received 20 February 2013; Revised 29 April 2013; Accepted 8 May 2013

Academic Editor: Vincent Sapin

Copyright © 2013 Linda Cassidy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Matsuda, S. Kure, and T. Ishiwata, “Nestin and other putative cancer stem cell markers in pancreatic cancer,” Medical Molecular Morphology, vol. 45, no. 2, pp. 59–65, 2012. View at Publisher · View at Google Scholar
  2. K. Okudela, T. Woo, H. Mitsui, M. Tajiri, M. Masuda, and K. Ohashi, “Expression of the potential cancer stem cell markers, CD133, CD44, ALDH1, and β-catenin, in primary lung adenocarcinoma-their prognostic significance,” Pathology International, vol. 62, no. 12, pp. 792–801, 2012. View at Publisher · View at Google Scholar
  3. K. K. Gowda, K. Gupta, R. Kapoor, and R. K. Vasishta, “Nuclear expression of β-catenin and stem cell markers as potential prognostic indicators in medulloblastoma,” Neurology India, vol. 60, no. 5, pp. 487–494, 2012. View at Publisher · View at Google Scholar
  4. H. J. Lee, D. W. Eom, G. H. Kang et al., “Colorectal micropapillary carcinomas are associated with poor prognosis and enriched in markers of stem cells,” Modern Pathology, 2012. View at Publisher · View at Google Scholar
  5. M. Podberezin, J. Wen, and C. C. Chang, “Cancer stem cells: a review of potential clinical applications,” Archives of Pathology & Laboratory Medicine. In press.
  6. C. Tang, A. S. Lee, J. P. Volkmer et al., “An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells,” Nature Biotechnology, vol. 29, no. 9, pp. 829–834, 2011. View at Publisher · View at Google Scholar
  7. Y. S. Son, R. H. Seong, C. J. Ryu et al., “Brief report: L1 cell adhesion molecule, a novel surface molecule of human embryonic stem cells, is essential for self-renewal and pluripotency,” Stem Cells, vol. 29, no. 12, pp. 2094–2099, 2011. View at Publisher · View at Google Scholar
  8. S. Bao, Q. Wu, Z. Li et al., “Targeting cancer stem cells through L1CAM suppresses glioma growth,” Cancer Research, vol. 68, no. 15, pp. 6043–6048, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. S. Meyer, R. L. Shearer, E. E. Capowski et al., “Modeling early retinal development with human embryonic and induced pluripotent stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 39, pp. 16698–16703, 2009. View at Publisher · View at Google Scholar
  10. G. M. Seigel, L. M. Campbell, M. Narayan, and F. Gonzalez-Fernandez, “Cancer stem cell characteristics in retinoblastoma,” Molecular Vision, vol. 11, pp. 729–737, 2005. View at Google Scholar · View at Scopus
  11. G. M. Seigel, A. S. Hackam, A. Ganguly, L. M. Mandell, and F. Gonzalez-Fernandez, “Human embryonic and neuronal stem cell markers in retinoblastoma,” Molecular Vision, vol. 13, pp. 823–832, 2007. View at Google Scholar · View at Scopus
  12. X. Li, Y. Z. Pan, G. M. Seigel, Z. H. Hu, M. Huang, and A. M. Yu, “Breast cancer resistance protein BCRP/ABCG2 regulatory microRNAs (hsa-miR-328, -519c and -520h) and their differential expression in stem-like ABCG2+ cancer cells,” Biochemical Pharmacology, vol. 81, no. 6, pp. 783–792, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. J. S. Moreb, “Aldehyde dehydrogenase as a marker for stem cells,” Current Stem Cell Research & Therapy, vol. 3, no. 4, pp. 237–246, 2008. View at Google Scholar · View at Scopus
  14. I. H. Park, R. Zhao, J. A. West et al., “Reprogramming of human somatic cells to pluripotency with defined factors,” Nature, vol. 451, no. 7175, pp. 141–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Hentze, R. Graichen, and A. Colman, “Cell therapy and the safety of embryonic stem cell-derived grafts,” Trends in Biotechnology, vol. 25, no. 1, pp. 24–32, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. W. Riggs, B. L. Barrilleaux, N. Varlakhanova et al., “High-level expression of stem cell marker CD133 in clear cell renal cell carcinoma with favorable prognosis,” Oncology Letters, vol. 2, no. 6, pp. 1095–1100, 2011. View at Publisher · View at Google Scholar
  17. A. Gore, Z. Li, H. L. Fung et al., “Somatic coding mutations in human induced pluripotent stem cells,” Nature, vol. 471, no. 7336, pp. 63–67, 2011. View at Publisher · View at Google Scholar
  18. R. Lister, M. Pelizzola, Y. S. Kida et al., “Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells,” Nature, vol. 471, no. 7336, pp. 68–73, 2011. View at Publisher · View at Google Scholar · View at Scopus