Table of Contents
Journal of Biomarkers
Volume 2014 (2014), Article ID 362164, 10 pages
http://dx.doi.org/10.1155/2014/362164
Research Article

Functional Epigenetic Analysis of Prostate Carcinoma: A Role for Seryl-tRNA Synthetase?

1Klinik für Urologie, Charité-Universitätsmedizin Berlin, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin, Germany
2Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany

Received 24 October 2013; Accepted 21 February 2014; Published 27 March 2014

Academic Editor: Ranju Ralhan

Copyright © 2014 Odiljon Ikromov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Ferlay, I. Soerjomataram, M. Ervik et al., GLOBOCAN, 2012 V1. 0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet], International Agency for Research on Cancer, Lyon, France, 2013.
  2. R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics, 2013,” CA: A Cancer Journal for Clinicians, vol. 63, no. 1, pp. 11–30, 2013. View at Publisher · View at Google Scholar
  3. R. Lister, M. Pelizzola, R. H. Dowen et al., “Human DNA methylomes at base resolution show widespread epigenomic differences,” Nature, vol. 462, no. 7271, pp. 315–322, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. M. Shen and C. Abate-Shen, “Molecular genetics of prostate cancer: new prospects for old challenges,” Genes and Development, vol. 24, no. 18, pp. 1967–2000, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. G. Herman and S. B. Baylin, “Gene silencing in cancer in association with promoter hypermethylation,” The New England Journal of Medicine, vol. 349, no. 21, pp. 2042–2054, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. A. S. Perry, R. W. G. Watson, M. Lawler, and D. Hollywood, “The epigenome as a therapeutic target in prostate cancer,” Nature Reviews Urology, vol. 7, no. 12, pp. 668–680, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Mund, B. Brueckner, and F. Lyko, “Reactivation of epigenetically silenced genes by DNA methyltransferase inhibitors: basic concepts and clinical applications,” Epigenetics, vol. 1, no. 1, pp. 7–13, 2006. View at Google Scholar · View at Scopus
  8. J. C. Cheng, C. B. Yoo, D. J. Weisenberger et al., “Preferential response of cancer cells to zebularine,” Cancer Cell, vol. 6, no. 2, pp. 151–158, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. J. C. Cheng, C. B. Matsen, F. A. Gonzales et al., “Inhibition of DNA methylation and reactivation of silenced genes by zebularine,” Journal of the National Cancer Institute, vol. 95, no. 5, pp. 399–409, 2003. View at Google Scholar · View at Scopus
  10. K. Chiam, M. M. Centenera, L. M. Butler, W. D. Tilley, and T. Bianco-Miotto, “GSTP1 DNA methylation and expression status is indicative of 5-aza-2′-deoxycytidine efficacy in human prostate cancer cells,” PLoS ONE, vol. 6, no. 9, Article ID e25634, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. R. A. Irizarry, B. M. Bolstad, F. Collin, L. M. Cope, B. Hobbs, and T. P. Speed, “Summaries of Affymetrix GeneChip probe level data,” Nucleic Acids Research, vol. 31, no. 4, article e15, 2003. View at Google Scholar · View at Scopus
  12. Y. Benjamini and Y. Hochberg, “Controlling the false dicovery rate: a practical and powerful approach to multiple testing,” Journal of the Royal Statistical Society, vol. 57, no. 1, pp. 289–300, 1995. View at Google Scholar
  13. H. C. Tsai and S. B. Baylin, “Cancer epigenetics: linking basic biology to clinical medicine,” Cell Research, vol. 21, no. 3, pp. 502–517, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. A. R. Karpf, P. W. Peterson, J. T. Rawlins et al., “Inhibition of DNA methyltransferase stimulates the expression of signal transducer and activator of transcription 1, 2, and 3 genes in colon tumor cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 24, pp. 14007–14012, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Lodygin, A. Epanchintsev, A. Menssen, J. Diebold, and H. Hermeking, “Functional epigenomics identifies genes frequently silenced in prostate cancer,” Cancer Research, vol. 65, no. 10, pp. 4218–4227, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Wang, B. Thompson, C. Ren, M. Ittmann, and B. Kwabi-Addo, “Sprouty4, a suppressor of tumor cell motility, is downregulated by DNA methylation in human prostate cancer,” Prostate, vol. 66, no. 6, pp. 613–624, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Ibragimova, I. I. de Cáceres, A. M. Hoffman et al., “Global reactivation of epigenetically silenced genes in prostate cancer,” Cancer Prevention Research, vol. 3, no. 9, pp. 1084–1092, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. W. H. Lee, R. A. Morton, J. I. Epstein et al., “Cytidine methylation of regulatory sequences near the π-class glutathione S-transferase gene accompanies human prostatic carcinogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 24, pp. 11733–11737, 1994. View at Publisher · View at Google Scholar · View at Scopus
  19. A. B. McKie, D. A. Douglas, S. Olijslagers et al., “Epigenetic inactivation of the human sprouty (hSPRY2) homologue in prostate cancer,” Oncogene, vol. 24, no. 13, pp. 2166–2174, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. Q. Zhan, “Gadd45a, a p53- and BRCA1-regulated stress protein, in cellular response to DNA damage,” Mutation Research—Fundamental and Molecular Mechanisms of Mutagenesis, vol. 569, no. 1-2, pp. 133–143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Ramachandran, G. Gopisetty, E. Gordian et al., “Methylation-mediated repression of GADD45α in prostate cancer and its role as a potential therapeutic target,” Cancer Research, vol. 69, no. 4, pp. 1527–1535, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. G. P. Sang, P. Schimmel, and S. Kim, “Aminoacyl tRNA synthetases and their connections to disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 32, pp. 11043–11049, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Xu, Y. Shi, H. Zhang et al., “Unique domain appended to vertebrate tRNA synthetase is essential for vascular development,” Nature Communications, vol. 3, article 681, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Shibuya, “Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis,” Journal of Biochemistry and Molecular Biology, vol. 39, no. 5, pp. 469–478, 2006. View at Google Scholar · View at Scopus
  25. I. Steiner, K. Jung, K. Miller, C. Stephan, and A. Erbersdobler, “Expression of endothelial factors in prostate cancer: a possible role of caveolin-1 for tumour progression,” Oncology Reports, vol. 27, no. 2, pp. 389–395, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Zeng and G. F. Combs Jr., “Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion,” Journal of Nutritional Biochemistry, vol. 19, no. 1, pp. 1–7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. M. Algotar, M. S. Stratton, F. R. Ahmann et al., “Phase 3 clinical trial investigating the effect of selenium supplementation in men at high-risk for prostate cancer,” vol. 73, no. 3, pp. 328–335, 2013. View at Publisher · View at Google Scholar
  28. K. Day, L. L. Waite, A. Thalacker-Mercer et al., “Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape,” Genome Biology, vol. 14, no. 9, article R102, 2013. View at Google Scholar