Table of Contents
Journal of Biomarkers
Volume 2016, Article ID 1274603, 11 pages
http://dx.doi.org/10.1155/2016/1274603
Research Article

A Sensitive IHC Method for Monitoring Autophagy-Specific Markers in Human Tumor Xenografts

1Department of Molecular Pathology, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA
2Cancer Pharmacology, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA
3Early Discovery, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA
4Protein Sciences, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA

Received 1 March 2016; Accepted 21 April 2016

Academic Editor: Yuen-Li Chung

Copyright © 2016 Helen He et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Mizushima, “Autophagy: process and function,” Genes and Development, vol. 21, no. 22, pp. 2861–2873, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Degenhardt, R. Mathew, B. Beaudoin et al., “Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis,” Cancer Cell, vol. 10, no. 1, pp. 51–64, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Bellot, R. Garcia-Medina, P. Gounon et al., “Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains,” Molecular and Cellular Biology, vol. 29, no. 10, pp. 2570–2581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. T. P. Neufeld, “Autophagy and cell growth—the yin and yang of nutrient responses,” Journal of Cell Science, vol. 125, part 10, pp. 2359–2368, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. R. K. Amaravadi and C. B. Thompson, “The roles of therapy-induced autophagy and necrosis in cancer treatment,” Clinical Cancer Research, vol. 13, no. 24, pp. 7271–7279, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. K. S. Choi, “Autophagy and cancer,” Experimental and Molecular Medicine, vol. 44, no. 2, pp. 109–120, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. H.-X. Yuan, R. C. Russell, and K.-L. Guan, “Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy,” Autophagy, vol. 9, no. 12, pp. 1983–1995, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Vaupel and L. Harrison, “Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response,” Oncologist, vol. 9, supplement 5, pp. 4–9, 2004. View at Google Scholar · View at Scopus
  9. M. Indelicato, B. Pucci, L. Schito et al., “Role of hypoxia and autophagy in mda-mb-231 invasiveness,” Journal of Cellular Physiology, vol. 223, no. 2, pp. 359–368, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. N. M. Mazure and J. Pouysségur, “Hypoxia-induced autophagy: cell death or cell survival?” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 177–180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. M. V. Blagosklonny, “Hypoxia, MTOR and autophagy: converging on senescence or quiescence,” Autophagy, vol. 9, no. 2, pp. 260–262, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Rogov, V. Dötsch, T. Johansen, and V. Kirkin, “Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy,” Molecular Cell, vol. 53, no. 2, pp. 167–178, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Komatsu, S. Waguri, T. Ueno et al., “Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice,” Journal of Cell Biology, vol. 169, no. 3, pp. 425–434, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Pankiv, T. H. Clausen, T. Lamark et al., “p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy,” The Journal of Biological Chemistry, vol. 282, no. 33, pp. 24131–24145, 2007. View at Publisher · View at Google Scholar
  15. T. Johansen and T. Lamark, “Selective autophagy mediated by autophagic adapter proteins,” Autophagy, vol. 7, no. 3, pp. 279–296, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Martinet, G. R. Y. De Meyer, L. Andries, A. G. Herman, and M. M. Kockx, “Detection of autophagy in tissue by standard immunohistochemistry: possibilities and limitations,” Autophagy, vol. 2, no. 1, pp. 55–57, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Barth, D. Glick, and K. F. Macleod, “Autophagy: assays and artifacts,” The Journal of Pathology, vol. 221, no. 2, pp. 117–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Orsi, M. Razi, H. C. Dooley et al., “Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy,” Molecular Biology of the Cell, vol. 23, no. 10, pp. 1860–1873, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. M. T. Rosenfeldt, C. Nixon, E. Liu, L. Y. Mah, and K. M. Ryan, “Analysis of macroautophagy by immunohistochemistry,” Autophagy, vol. 8, no. 6, pp. 963–969, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Martinet, D. M. Schrijvers, J.-P. Timmermans, H. Bult, and G. R. Y. De Meyer, “Immunohistochemical analysis of macroautophagy: recommendations and limitations,” Autophagy, vol. 9, no. 3, pp. 386–402, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. M. N. Bobrow, T. D. Harris, K. J. Shaughnessy, and G. J. Litt, “Catalyzed reporter deposition, a novel method of signal amplification application to immunoassays,” Journal of Immunological Methods, vol. 125, no. 1-2, pp. 279–285, 1989. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Maiso, Y. Liu, B. Morgan et al., “Defining the role of TORC1/2 in multiple myeloma,” Blood, vol. 118, no. 26, pp. 6860–6870, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Yu, C. K. McPhee, L. Zheng et al., “Termination of autophagy and reformation of lysosomes regulated by mTOR,” Nature, vol. 465, no. 7300, pp. 942–946, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Lilienbaum, “Relationship between the proteasomal system and autophagy,” International Journal of Biochemistry and Molecular Biology, vol. 4, no. 1, pp. 1–26, 2013. View at Google Scholar · View at Scopus
  25. I. Tanida, T. Ueno, and E. Kominami, “LC3 and autophagy,” Methods in Molecular Biology, vol. 445, pp. 77–88, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. P. Kirkpatrick, Z. N. Rabbani, R. C. Bentley et al., “Elevated CAIX expression is associated with an increased risk of distant failure in early-stage cervical cancer,” Biomarker Insights, vol. 3, pp. 45–55, 2008. View at Google Scholar · View at Scopus
  27. M. C. Brahimi-Horn, J. Chiche, and J. Pouysségur, “Hypoxia and cancer,” Journal of Molecular Medicine, vol. 85, no. 12, pp. 1301–1307, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Moscat and M. T. Diaz-Meco, “p62 at the crossroads of autophagy, apoptosis, and cancer,” Cell, vol. 137, no. 6, pp. 1001–1004, 2009. View at Publisher · View at Google Scholar · View at Scopus