Table of Contents
Journal of Biophysics
Volume 2011 (2011), Article ID 219515, 11 pages
http://dx.doi.org/10.1155/2011/219515
Research Article

Examinations of tRNA Range of Motion Using Simulations of Cryo-EM Microscopy and X-Ray Data

1School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Avenue, Atlanta, GA 30332-0230, USA
2School of Biology, Georgia Institute of Technology, 901 Atlantic Avenue, Atlanta, GA 30332-0230, USA

Received 27 September 2010; Revised 31 December 2010; Accepted 24 January 2011

Academic Editor: Eaton Edward Lattman

Copyright © 2011 Thomas R. Caulfield et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. Robertus, J. E. Ladner, J. T. Finch et al., “Structure of yeast phenylalanine tRNA at 3 Å resolution,” Nature, vol. 250, no. 5467, pp. 546–551, 1974. View at Google Scholar
  2. J. D. Robertus, J. E. Ladner, J. T. Finch et al., “Correlation between three-dimensional structure and chemical reactivity of transfer RNA,” Nucleic Acids Research, vol. 1, no. 7, pp. 927–932, 1974. View at Google Scholar · View at Scopus
  3. T. Olson, M. J. Fournier, K. H. Langley, and N. C. Ford, “Detection of a major conformational change in transfer ribonucleic acid by laser light scattering,” Journal of Molecular Biology, vol. 102, no. 2, pp. 193–203, 1976. View at Google Scholar · View at Scopus
  4. P. Dumas, J. P. Ebel, R. Giege, D. Moras, J. C. Thierry, and E. Westhof, “Crystal structure of yeast tRNA(Asp): atomic coordinates,” Biochimie, vol. 67, no. 6, pp. 597–606, 1985. View at Google Scholar
  5. D. Moras, A. C. Dock, P. Dumas et al., “The structure of yeast tRNA(Asp). A model for tRNA interacting with messenger RNA,” Journal of Biomolecular Structure and Dynamics, vol. 3, no. 3, pp. 479–493, 1985. View at Google Scholar
  6. M. W. Friederich, F. U. Gast, E. Vacano, and P. J. Hagermant, “Determination of the angle between the anticodon and aminoacyl acceptor stems of yeast phenylalanyl tRNA in solution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 11, pp. 4803–4807, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. M. W. Friederich, E. Vacano, and P. J. Hagerman, “Global flexibility of tertiary structure in RNA: yeast tRNA as a model system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 7, pp. 3572–3577, 1998. View at Google Scholar · View at Scopus
  8. E. Vacano and P. J. Hagerman, “Analysis of birefringence decay profiles for nucleic acid helices possessing bends: the τ-ratio approach,” Biophysical Journal, vol. 73, no. 1, pp. 306–317, 1997. View at Google Scholar · View at Scopus
  9. M. M. Yusupov, G. Yusupova, A. Baucom et al., “Crystal structure of the ribosome at 5.5 Å resolution,” Science, vol. 292, no. 5518, pp. 883–896, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. J. C. Schuette, F. V. Murphy, A. C. Kelley et al., “GTPase activation of elongation factor EF-Tu by the ribosome during decoding,” The EMBO Journal, vol. 28, no. 6, pp. 755–765, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Stark, M. V. Rodnina, H. J. Wieden, F. Zemlin, W. Wintermeyer, and M. van Heel, “Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex,” Nature Structural Biology, vol. 9, no. 11, pp. 849–854, 2002. View at Google Scholar · View at Scopus
  12. M. Valle, R. Gillet, S. Kaur, A. Henne, V. Ramakrishnan, and J. Frank, “Visualizing tmRNA entry into a stalled ribosome,” Science, vol. 300, no. 5616, pp. 127–130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Valle, A. Zavialov, W. Li et al., “Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy,” Nature Structural Biology, vol. 10, no. 11, pp. 899–906, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Valle, A. Zavialov, J. Sengupta, U. Rawat, M. Ehrenberg, and J. Frank, “Locking and unlocking of ribosomal motions,” Cell, vol. 114, no. 1, pp. 123–134, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Villa, J. Sengupta, L. G. Trabuco et al., “Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 4, pp. 1063–1068, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. C. Harvey and J. A. McCammon, “Intramolecular flexibility in phenylalanine transfer RNA,” Nature, vol. 294, no. 5838, pp. 286–287, 1981. View at Google Scholar · View at Scopus
  17. S. C. Harvey, M. Prabhakaran, B. Mao, and J. A. McCammon, “Phenylalanine transfer RNA: molecular dynamics simulation,” Science, vol. 223, no. 4641, pp. 1189–1191, 1984. View at Google Scholar · View at Scopus
  18. M. Prabhakaran, S. C. Harvey, B. Mao, and J. A. McCammon, “Molecular dynamics of phenylalanine transfer RNA,” Journal of Biomolecular Structure and Dynamics, vol. 1, no. 2, pp. 357–369, 1983. View at Google Scholar · View at Scopus
  19. P. Auffinger and E. Westhof, “Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes,” Journal of Molecular Biology, vol. 292, no. 3, pp. 467–483, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Y. Sanbonmatsu, S. Joseph, and C. S. Tung, “Simulating movement of tRNA into the ribosome during decoding,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 44, pp. 15854–15859, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Y. Sanbonmatsu and C. S. Tung, “High performance computing in biology: Multimillion atom simulations of nanoscale systems,” Journal of Structural Biology, vol. 157, no. 3, pp. 470–480, 2006. View at Google Scholar
  22. M. Nina and T. Simonson, “Molecular dynamics of the tRNA acceptor stem: comparison between continuum reaction field and particle-mesh Ewald electrostatic treatments,” Journal of Physical Chemistry B, vol. 106, no. 14, pp. 3696–3705, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Auffinger, L. Bielecki, and E. Westhof, “Symmetric K and Mg ion-binding sites in the 5 S rRNA loop e inferred from molecular dynamics simulations,” Journal of Molecular Biology, vol. 335, no. 2, pp. 555–571, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Auffinger, L. Bielecki, and E. Westhof, “The Mg binding sites of the 5S rRNA loop E motif as investigated by molecular dynamics simulations,” Chemistry and Biology, vol. 10, no. 6, pp. 551–561, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Cojocaru, R. Klement, and T. M. Jovin, “Loss of G-A base pairs is insufficient for achieving a large opening of U4 snRNA K-turn motif,” Nucleic Acids Research, vol. 33, no. 10, pp. 3435–3446, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Li, B. Ma, and B. A. Shapiro, “Binding interactions between the core central domain of 16S rRNA and the ribosomal protein S15 determined by molecular dynamics simulations,” Nucleic Acids Research, vol. 31, no. 2, pp. 629–638, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Y. Sanbonmatsu and S. Joseph, “Understanding discrimination by the ribosome: stability testing and groove measurement of codon-anticodon pairs,” Journal of Molecular Biology, vol. 328, no. 1, pp. 33–47, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Réblová, N. Špačková, R. Štefl et al., “Non-Watson-Crick basepairing and hydration in RNA motifs: molecular dynamics of 5S rRNA loop E,” Biophysical Journal, vol. 84, no. 6, pp. 3564–3582, 2003. View at Google Scholar · View at Scopus
  29. J. Sarzynska, T. Kulinski, and L. Nilsson, “Conformational dynamics of a 5S rRNA hairpin domain containing loop D and a single nucleotide bulge,” Biophysical Journal, vol. 79, no. 3, pp. 1213–1227, 2000. View at Google Scholar · View at Scopus
  30. N. Špačková and J. Šponer, “Molecular dynamics simulations of sarcin-ricin rRNA motif,” Nucleic Acids Research, vol. 34, no. 2, pp. 697–708, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Réblová, F. Lankaš, F. Rázga, M. V. Krasovska, J. Koča, and J. Šponer, “Structure, dynamics, and elasticity of free 16S rRNA helix 44 studied by molecular dynamics simulations,” Biopolymers, vol. 82, no. 5, pp. 504–520, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. A. C. Vaiana and K. Y. Sanbonmatsu, “Stochastic gating and drug-ribosome interactions,” Journal of Molecular Biology, vol. 386, no. 3, pp. 648–661, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Shi and P. B. Moore, “The crystal structure of yeast phenylalanine tRNA at 1.93 A resolution: a classic structure revisited,” RNA, vol. 6, pp. 1091–1105, 2000. View at Google Scholar
  34. T. R. Caulfield and S. C. Harvey, “Conformational fitting of atomic models to cryogenic-electron microscopy maps using Maxwell’s demon molecular dynamics,” Biophysical Journal, pp. 368A–368A, 2007. View at Google Scholar
  35. B. R. Brooks, R. E. B. Olafson, D. J. States, S. Swaminathan, and M. Karplus, “CHARMM: a program for macromolecular energy, minimization, and dynamics calculations,” Journal of Computational Chemistry, vol. 4, no. 2, pp. 187–217, 1983. View at Publisher · View at Google Scholar
  36. W. D. Cornell, P. Cieplak, C. I. Bayly et al., “A second generation force field for the simulation of proteins, nucleic acids, and organic molecules,” Journal of the American Chemical Society, vol. 117, no. 19, pp. 5179–5197, 1995. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Pérez, I. Marchán, D. Svozil et al., “Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers,” Biophysical Journal, vol. 92, no. 11, pp. 3817–3829, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Kalé, R. Skeel, M. Bhandarkar et al., “NAMD2: greater scalability for parallel molecular dynamics,” Journal of Computational Physics, vol. 151, no. 1, pp. 283–312, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. D. A. Pearlman, D. A. Case, J. W. Caldwell et al., “AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules,” Computer Physics Communications, vol. 91, no. 1–3, pp. 1–41, 1995. View at Google Scholar · View at Scopus
  40. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, “Comparison of simple potential functions for simulating liquid water,” The Journal of Chemical Physics, vol. 79, no. 2, pp. 926–935, 1983. View at Google Scholar · View at Scopus
  41. R. Aduri, B. T. Psciuk, P. Saro, H. Taniga, H. B. Schlegel, and J. SantaLucia Jr., “AMBER force field parameters for the naturally occurring modified nucleosides in RNA,” Journal of Chemical Theory and Computation, vol. 3, no. 4, pp. 1464–1475, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. W. S. Ross and C. C. Hardin, “Ion-induced stabilization of the G-DNA quadruplex: free energy perturbation studies,” Journal of the American Chemical Society, vol. 116, no. 14, pp. 6070–6080, 1994. View at Google Scholar · View at Scopus
  43. T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems,” The Journal of Chemical Physics, vol. 98, no. 12, pp. 10089–10092, 1993. View at Google Scholar · View at Scopus
  44. J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, “Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes,” Journal of Computational Physics, vol. 23, no. 3, pp. 327–341, 1977. View at Google Scholar · View at Scopus
  45. S. C. Harvey, R. K. Tan, and T. E. Cheatham III, “The flying ice cube: velocity rescaling in molecular dynamics leads to violation of energy equipartition,” Journal of Computational Chemistry, vol. 19, no. 7, pp. 726–740, 1998. View at Publisher · View at Google Scholar
  46. J. Frank, M. Radermacher, P. Penczek et al., “SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields,” Journal of Structural Biology, vol. 116, no. 1, pp. 190–199, 1996. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Tama, O. Miyashita, and C. L. Brooks III, “Flexible multi-scale fitting of atomic structures into low-resolution electron density maps with elastic network normal mode analysis,” Journal of Molecular Biology, vol. 337, no. 4, pp. 985–999, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. F. Tama, O. Miyashita, and C. L. Brooks III, “Normal mode based flexible fitting of high-resolution structure into low-resolution experimental data from cryo-EM,” Journal of Structural Biology, vol. 147, no. 3, pp. 315–326, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Orzechowski and F. Tama, “Flexible fitting of high-resolution X-ray structures into cryoelectron microscopy maps using biased molecular dynamics simulations,” Biophysical Journal, vol. 95, no. 12, pp. 5692–5705, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. H. M. Berman, W. K. Olson, D. L. Beveridge et al., “The nucleic acid database. A comprehensive relational database of three- dimensional structures of nucleic acids,” Biophysical Journal, vol. 63, no. 3, pp. 751–759, 1992. View at Google Scholar · View at Scopus
  51. P. E. Bourne, K. J. Addess, W. F. Bluhm et al., “The distribution and query systems of the RCSB Protein Data Bank,” Nucleic Acids Research, vol. 32, pp. D223–D225, 2004. View at Google Scholar · View at Scopus
  52. J. Frank, J. Sengupta, H. Gao et al., “The role of tRNA as a molecular spring in decoding, accommodation, and peptidyl transfer,” FEBS Letters, vol. 579, no. 4, pp. 959–962, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. S. C. Harvey and H. A. Gabb, “Conformational transitions using molecular dynamics with minimum biasing,” Biopolymers, vol. 33, no. 8, pp. 1167–1172, 1993. View at Google Scholar · View at Scopus
  54. P. C. Whitford, P. Geggier, R. B. Altman, S. C. Blanchard, J. N. Onuchic, and K. Y. Sanbonmatsu, “Accommodation of aminoacyl-tRNA into the ribosome involves reversible excursions along multiple pathways,” RNA, vol. 16, no. 6, pp. 1196–1204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. O. Namy, S. J. Moran, D. I. Stuart, R. J. C. Gilbert, and I. Brierley, “A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting,” Nature, vol. 441, no. 7090, pp. 244–247, 2006. View at Publisher · View at Google Scholar · View at Scopus