Table of Contents
Journal of Biophysics
Volume 2012 (2012), Article ID 185907, 9 pages
http://dx.doi.org/10.1155/2012/185907
Research Article

pH-Dependent Interaction between C-Peptide and Phospholipid Bicelles

Department of Biochemistry and Biophysics, Center for Biomembrane Research, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden

Received 19 April 2012; Accepted 22 May 2012

Academic Editor: Andreas Herrmann

Copyright © 2012 Sofia Unnerståle and Lena Mäler. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. F. Steiner, D. Cunningham, L. Spigelman, and B. Aten, “Insulin biosynthesis: evidence for a precursor,” Science, vol. 157, no. 3789, pp. 697–700, 1967. View at Google Scholar · View at Scopus
  2. D. F. Steiner and P. E. Oyer, “The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 57, no. 2, pp. 473–480, 1967. View at Google Scholar
  3. R. E. Chance, R. M. Ellis, and W. W. Bromer, “Porcine proinsulin: characterization and amino acid sequence,” Science, vol. 161, no. 3837, pp. 165–167, 1968. View at Google Scholar · View at Scopus
  4. D. F. Steiner, “Proinsulin and the biosynthesis of insulin,” The New England Journal of Medicine, vol. 280, no. 20, pp. 1106–1113, 1969. View at Google Scholar · View at Scopus
  5. J. Wahren, B. L. Johansson, and H. Wallberg-Henriksson, “Does C-peptide have a physiological role?” Diabetologia, vol. 37, no. 2, pp. S99–S107, 1994. View at Google Scholar · View at Scopus
  6. J. Wahren, K. Ekberg, J. Johansson et al., “Role of C-peptide in human physiology,” American Journal of Physiology, vol. 278, no. 5, pp. E759–E768, 2000. View at Google Scholar · View at Scopus
  7. J. Wahren, K. Ekberg, and H. Jörnvall, “C-peptide is a bioactive peptide,” Diabetologia, vol. 50, no. 3, pp. 503–509, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. L. M. Chen, X. W. Yang, and J. G. Tang, “Acidic residues on the N-terminus of proinsulin C-peptide are important for the folding of insulin precursor,” Journal of Biochemistry, vol. 131, no. 6, pp. 855–859, 2002. View at Google Scholar · View at Scopus
  9. Y. Ohtomo, T. Bergman, B. L. Johansson, H. Jörnvall, and J. Wahren, “Differential effects of proinsulin C-peptide fragments on Na+, K+- ATPase activity of renal tubule segments,” Diabetologia, vol. 41, no. 3, pp. 287–291, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Rigler, A. Pramanik, P. Jonasson et al., “Specific binding of proinsulin C-peptide to human cell membranes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 23, pp. 13318–13323, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Pramanik, K. Ekberg, Z. Zhong et al., “C-peptide binding to human cell membranes: importance of Glu27,” Biochemical and Biophysical Research Communications, vol. 284, no. 1, pp. 94–98, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Henriksson, J. Shafqat, E. Liepinsh et al., “Unordered structure of proinsulin C-peptide in aqueous solution and in the presence of lipid vesicles,” Cellular and Molecular Life Sciences, vol. 57, no. 2, pp. 337–342, 2000. View at Google Scholar · View at Scopus
  13. C. E. Munte, L. Vilela, H. R. Kalbitzer, and R. C. Garratt, “Solution structure of human proinsulin C-peptide,” FEBS Journal, vol. 272, no. 16, pp. 4284–4293, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Jörnvall, E. Lindahl, J. Astorga-Wells et al., “Oligomerization and insulin interactions of proinsulin C-peptide: threefold relationships to properties of insulin,” Biochemical and Biophysical Research Communications, vol. 391, no. 3, pp. 1561–1566, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Lind, E. Lindahl, A. Perálvarez-Marín, A. Holmlund, H. Jörnvall, and L. Mäler, “Structural features of proinsulin C-peptide oligomeric and amyloid states,” FEBS Journal, vol. 277, no. 18, pp. 3759–3768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. C. M. Dobson, “Protein misfolding, evolution and disease,” Trends in Biochemical Sciences, vol. 24, no. 9, pp. 329–332, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. C. M. Dobson, “Protein folding and misfolding,” Nature, vol. 426, no. 6968, pp. 884–890, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. S. A. Waschuk, E. A. Elton, A. A. Darabie, P. E. Fraser, and J. McLaurin, “Cellular membrane composition defines Aβ-lipid interactions,” Journal of Biological Chemistry, vol. 276, no. 36, pp. 33561–33568, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Bokvist, F. Lindström, A. Watts, and G. Gröbner, “Two types of Alzheimer's β-amyloid (1–40) peptide membrane interactions: aggregation preventing transmembrane anchoring versus accelerated surface fibril formation,” Journal of Molecular Biology, vol. 335, no. 4, pp. 1039–1049, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Wahlström, L. Hugonin, A. Perálvarez-Marín, J. Jarvet, and A. Gräslund, “Secondary structure conversions of Alzheimer's Aβ(1–40) peptide induced by membrane-mimicking detergents,” FEBS Journal, vol. 275, no. 20, pp. 5117–5128, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. C. R. Sanders and R. S. Prosser, “Bicelles: a model membrane system for all seasons?” Structure, vol. 6, no. 10, pp. 1227–1234, 1998. View at Google Scholar · View at Scopus
  22. R. R. Vold, R. S. Prosser, and A. J. Deese, “Isotropic solutions of phospholipid bicelles: a new membrane mimetic for high-resolution NMR studies of polypeptides,” Journal of Biomolecular NMR, vol. 9, no. 3, pp. 329–335, 1997. View at Google Scholar · View at Scopus
  23. K. J. Glover, J. A. Whiles, G. Wu et al., “Structural evaluation of phospholipid bicelles for solution-state studies of membrane-associated biomolecules,” Biophysical Journal, vol. 81, no. 4, pp. 2163–2171, 2001. View at Google Scholar · View at Scopus
  24. J. J. Chou, J. L. Baber, and A. Bax, “Characterization of phospholipid mixed micelles by translational diffusion,” Journal of Biomolecular NMR, vol. 29, no. 3, pp. 299–308, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. L. van Dam, G. Karlsson, and K. Edwards, “Direct observation and characterization of DMPC/DHPC aggregates under conditions relevant for biological solution NMR,” Biochimica et Biophysica Acta, vol. 1664, no. 2, pp. 241–256, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Andersson and L. Mäler, “Magnetic resonance investigations of lipid motion in isotropic bicelles,” Langmuir, vol. 21, no. 17, pp. 7702–7709, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Perálvarez-Marín, A. Barth, and A. Gräslund, “Time-resolved infrared spectroscopy of pH-induced aggregation of the Alzheimer Aβ1-28 peptide,” Journal of Molecular Biology, vol. 379, no. 3, pp. 589–596, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. E. O. Stejskal and J. E. Tanner, “Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient,” The Journal of Chemical Physics, vol. 42, no. 1, pp. 288–292, 1965. View at Google Scholar · View at Scopus
  29. E. Von Meerwall and M. Kamat, “Effect of residual field gradients on pulsed-gradient NMR diffusion measurements,” Journal of Magnetic Resonance, vol. 83, no. 2, pp. 309–323, 1989. View at Google Scholar · View at Scopus
  30. P. T. Callaghan, M. E. Komlosh, and M. Nyden, “High magnetic field gradient PGSE NMR in the presence of a large polarizing field,” Journal of Magnetic Resonance, vol. 133, no. 1, pp. 177–182, 1998. View at Google Scholar · View at Scopus
  31. P. Damberg, J. Jarvet, and A. Gräslund, “Accurate measurement of translational diffusion coefficients: a practical method to account for nonlinear gradients,” Journal of Magnetic Resonance, vol. 148, no. 2, pp. 343–348, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. L. G. Longsworth, “The mutual diffusion of light and heavy water,” Journal of Physical Chemistry, vol. 64, no. 12, pp. 1914–1917, 1961. View at Google Scholar · View at Scopus
  33. L. Braunschweiler and R. R. Ernst, “Coherence transfer by isotropic mixing: application to proton correlation spectroscopy,” Journal of Magnetic Resonance, vol. 53, no. 3, pp. 521–528, 1983. View at Google Scholar · View at Scopus
  34. J. Lind, A. Gräslund, and L. Mäler, “Membrane interactions of dynorphins,” Biochemistry, vol. 45, no. 51, pp. 15931–15940, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. D. S. Wishart, B. D. Sykes, and F. M. Richards, “The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy,” Biochemistry, vol. 31, no. 6, pp. 1647–1651, 1992. View at Google Scholar · View at Scopus
  36. D. S. Wishart, C. G. Bigam, A. Holm, R. S. Hodges, and B. D. Sykes, “1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects,” Journal of Biomolecular NMR, vol. 5, no. 1, pp. 67–81, 1995. View at Publisher · View at Google Scholar · View at Scopus
  37. I. Marcotte and M. Auger, “Bicelles as model membranes for solid-and solution-state NMR studies of membrane peptides and proteins,” Concepts in Magnetic Resonance A, vol. 24, no. 1, pp. 17–35, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. R. S. Prosser, F. Evanics, J. L. Kitevski, and M. S. Al-Abdul-Wahid, “Current applications of bicelles in NMR studies of membrane-associated amphiphiles and proteins,” Biochemistry, vol. 45, no. 28, pp. 8453–8465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Danielsson, J. Jarvet, P. Damberg, and A. Gräslund, “Translational diffusion measured by PFG-NMR on full length and fragments of the Alzheimer Aβ(1–40) peptide. Determination of hydrodynamic radii of random coil peptides of varying length,” Magnetic Resonance in Chemistry, vol. 40, pp. S89–S97, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Shafqat, E. Melles, K. Sigmundsson et al., “Proinsulin C-peptide elicits disaggregation of insulin resulting in enhanced physiological insulin effects,” Cellular and Molecular Life Sciences, vol. 63, no. 15, pp. 1805–1811, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Ohtomo, A. Aperia, B. Sahlgren, B. L. Johansson, and J. Wahren, “C-peptide stimulates rat renal tubular Na+, K+-ATPase activity in synergism with neuropeptide Y,” Diabetologia, vol. 39, no. 2, pp. 199–205, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Ido, A. Vindigni, K. Chang et al., “Prevention of vascular and neural dysfunction in diabetic rats by C- peptide,” Science, vol. 277, no. 5325, pp. 563–566, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Schlesinger, Y. Ido, and J. Williamsson, “Conductive channel properties of human C-peptide in-corporated into planar lipid bilayers,” Diabetes, vol. 47, supplement 1, p. A29, 1998. View at Google Scholar
  44. P. Tompa, “Unstructural biology coming of age,” Current Opinion in Structural Biology, vol. 21, no. 3, pp. 419–425, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Mittag, J. Marsh, A. Grishaev et al., “Structure/function implications in a dynamic complex of the intrinsically disordered Sic1 with the Cdc4 subunit of an SCF ubiquitin ligase,” Structure, vol. 18, no. 4, pp. 494–506, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. V. N. Uversky, “Intrinsically disordered proteins from A to Z,” International Journal of Biochemistry and Cell Biology, vol. 43, no. 8, pp. 1090–1103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. O. A. Andreev, A. D. Dupuy, M. Segala et al., “Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 19, pp. 7893–7898, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Wijesinghe, D. M. Engelman, O. A. Andreev, and Y. K. Reshetnyak, “Tuning a polar molecule for selective cytoplasmic delivery by a pH (Low) Insertion Peptide,” Biochemistry, vol. 50, no. 47, pp. 10215–10222, 2011. View at Google Scholar