Table of Contents
Journal of Biophysics
Volume 2012, Article ID 642745, 7 pages
http://dx.doi.org/10.1155/2012/642745
Research Article

A Molecular Dynamics Approach to Ligand-Receptor Interaction in the Aspirin-Human Serum Albumin Complex

Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), CONICET y Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 49-789, cc 565, B1900BTE La Plata, Argentina

Received 5 July 2012; Revised 14 September 2012; Accepted 29 September 2012

Academic Editor: Claudio M. Soares

Copyright © 2012 H. Ariel Alvarez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Yang, C. Bian, L. Zhu, G. Zhao, Z. Huang, and M. Huang, “Effect of human serum albumin on drug metabolism: structural evidence of esterase activity of human serum albumin,” Journal of Structural Biology, vol. 157, no. 2, pp. 348–355, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Ahmed, D. Dobler, M. Dean, and P. J. Thornalley, “Peptide mapping identifies hotspot site of modification in human serum albumin by methylglyoxal involved in ligand binding and esterase activity,” Journal of Biological Chemistry, vol. 280, no. 7, pp. 5724–5732, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Dubois-Presle, F. Lapicque, M. H. Maurice et al., “Stereoselective esterase activity of human serum albumin toward ketoprofen glucuronide,” Molecular Pharmacology, vol. 47, no. 3, pp. 647–653, 1995. View at Google Scholar · View at Scopus
  4. B. Bojko, A. Sułkowska, M. Maciazek, J. Równicka, F. Njau, and W. W. Sułkowski, “Changes of serum albumin affinity for aspirin induced by fatty acid,” International Journal of Biological Macromolecules, vol. 42, no. 4, pp. 314–323, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, “GROMACS: fast, flexible, and free,” Journal of Computational Chemistry, vol. 26, no. 16, pp. 1701–1718, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. W. F. van Gunsteren, S. R. Billeter, A. A. Eising et al., Biomolecular Simulation: The GROMOS96 Manual and Userguide, Hochschuleverlag AG an der ETH Zürich, 1996.
  7. B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, “LINCS: a linear constraint solver for molecular simulations,” Journal of Computational Chemistry, vol. 18, no. 12, pp. 1463–1472, 1997. View at Google Scholar · View at Scopus
  8. S. Miyamoto and P. A. Kollman, “Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models,” Journal of Computational Chemistry, vol. 13, pp. 952–962, 1992. View at Publisher · View at Google Scholar
  9. W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual molecular dynamics,” Journal of Molecular Graphics, vol. 14, no. 1, pp. 33–38, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. http://www.ks.uiuc.edu/Research/vmd/.
  11. http://plasma-gate.weizmann.ac.il/Grace/.
  12. N. Guex and M. C. Peitsch, “SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling,” Electrophoresis, vol. 18, no. 15, pp. 2714–2723, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, “The missing term in effective pair potentials,” Journal of Physical Chemistry, vol. 91, no. 24, pp. 6269–6271, 1987. View at Google Scholar · View at Scopus
  14. S. Leekumjorn, Y. Wu, A. K. Sum, and C. Chan, “Experimental and computational studies investigating trehalose protection of HepG2 cells from palmitate-induced toxicity,” Biophysical Journal, vol. 94, no. 7, pp. 2869–2883, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. D. P. Tieleman and H. J. C. Berendsen, “A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer,” Biophysical Journal, vol. 74, no. 6, pp. 2786–2801, 1998. View at Google Scholar · View at Scopus
  16. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” The Journal of Chemical Physics, vol. 81, no. 8, pp. 3684–3690, 1984. View at Google Scholar · View at Scopus
  17. A. A. Spector, “Fatty acid binding to plasma albumin,” Journal of Lipid Research, vol. 16, no. 3, pp. 165–179, 1975. View at Google Scholar · View at Scopus
  18. G. Hummer and A. Szabo, “Free energy reconstruction from nonequilibrium single-molecule pulling experiments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 7, pp. 3658–3661, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Jarzynski, “Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach,” Physical Review E, vol. 56, no. 5, pp. 5018–5035, 1997. View at Google Scholar · View at Scopus
  20. C. Jarzynski, “Nonequilibrium equality for free energy differences,” Physical Review Letters, vol. 78, no. 14, pp. 2690–2693, 1997. View at Google Scholar · View at Scopus
  21. S. Park, F. Khalili-Araghi, E. Tajkhorshid, and K. Schulten, “Free energy calculation from steered molecular dynamics simulations using Jarzynski's equality,” Journal of Chemical Physics, vol. 119, no. 6, pp. 3559–3566, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. E. G. D. Cohen and M. David, “A note on the Jarzynski equality,” Journal of Statistical Mechanics, vol. 2004, Article ID P07006, 17 pages, 2004. View at Google Scholar
  23. C. Jarzynski, “Nonequilibrium work theorem for a system strongly coupled to a thermal environment,” Journal of Statistical Mechanics, vol. 2004, Article ID P09005, 2004. View at Google Scholar