Table of Contents
Journal of Biophysics
Volume 2012 (2012), Article ID 921653, 6 pages
http://dx.doi.org/10.1155/2012/921653
Research Article

Redox Regulation of Calcium Signaling in Cancer Cells by Ascorbic Acid Involving the Mitochondrial Electron Transport Chain

Department of Biophysics, Belarusian State University, Nezavisimosti Avenue 4, 220030 Minsk, Belarus

Received 29 August 2012; Revised 29 October 2012; Accepted 29 October 2012

Academic Editor: Eaton Edward Lattman

Copyright © 2012 Grigory G. Martinovich et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Rusnak and T. Reiter, “Sensing electrons: protein phosphatase redox regulation,” Trends in Biochemical Sciences, vol. 25, no. 11, pp. 527–529, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. G. M. Ullmann and E. W. Knapp, “Electrostatic models for computing protonation and redox equilibria in proteins,” European Biophysics Journal, vol. 28, no. 7, pp. 533–551, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. D. P. Jones, “Redox sensing: orthogonal control in cell cycle and apoptosis signalling,” Journal of Internal Medicine, vol. 268, no. 5, pp. 432–448, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. D. P. Jones, “Radical-free biology of oxidative stress,” American Journal of Physiology, vol. 295, no. 4, pp. C849–C868, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. G. G. Martinovich, I. V. Martinovich, and S. N. Cherenkevich, “Redox regulation of cellular processes: a biophysical model and experiment,” Biophysics, vol. 56, no. 3, pp. 444–451, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. G. G. Martinovich, I. V. Martinovich, S. N. Cherenkevich, and H. Sauer, “Redox buffer capacity of the cell: theoretical and experimental approach,” Cell Biochemistry and Biophysics, vol. 58, no. 2, pp. 75–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Park, S. S. Han, C. H. Park et al., “L-Ascorbic acid induces apoptosis in acute myeloid leukemia cells via hydrogen peroxide-mediated mechanisms,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 11, pp. 2180–2195, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. X. Sun, Q. S. Zheng, G. Li, D. A. Guo, and Z. R. Wang, “Mechanism of ascorbic acid-induced reversion against malignant phenotype in human gastric cancer cells,” Biomedical and Environmental Sciences, vol. 19, no. 5, pp. 385–391, 2006. View at Google Scholar · View at Scopus
  9. Q. Chen, M. G. Espey, M. C. Krishna et al., “Pharamacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissuse,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 38, pp. 13604–13609, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. Q. Chen, M. G. Espey, A. Y. Sun et al., “Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 32, pp. 11105–11109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Ohno, Y. Ohno, N. Suzuki, G. I. Soma, and M. Inoue, “High-dose vitamin C (ascorbic acid) therapy in the treatment of patients with advanced cancer,” Anticancer Research, vol. 29, no. 3, pp. 809–815, 2009. View at Google Scholar · View at Scopus
  12. H. B. Pollard, M. A. Levine, O. Eidelman, and M. Pollard, “Pharmacological ascorbic acid suppresses syngeneic tumor growth and metastases in hormone-refractory prostate cancer,” In Vivo, vol. 24, no. 3, pp. 249–255, 2010. View at Google Scholar · View at Scopus
  13. G. R. Buettner and B. A. Jurkiewicz, “Catalytic metals, ascorbate and free radicals: combinations to avoid,” Radiation Research, vol. 145, no. 5, pp. 532–541, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. Q. Chen, M. G. Espey, A. Y. Sun et al., “Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 21, pp. 8749–8754, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Suh, B. Z. Zhu, and B. Frei, “Ascorbate does not act as a pro-oxidant towards lipids and proteins in human plasma exposed to redox-active transition metal ions and hydrogen peroxide,” Free Radical Biology and Medicine, vol. 34, no. 10, pp. 1306–1314, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. G. G. Martinovich, I. V. Martinovich, and S. N. Cherenkevich, “Effects of ascorbic acid on calcium signaling in tumor cells,” Bulletin of Experimental Biology and Medicine, vol. 147, no. 4, pp. 469–472, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. R. A. Hirst, C. Harrison, K. Hirota, and D. G. Lambert, “Measurement of [Ca2+]i in whole cell suspensions using fura-2,” Methods in Molecular Biology, vol. 312, pp. 37–45, 2006. View at Google Scholar · View at Scopus
  18. X. Chen, Z. Zhong, Z. Xu, L. Chen, and Y. Wang, “2′,7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy,” Free Radical Research, vol. 44, no. 6, pp. 587–604, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Lenaz and M. L. Genova, “Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject,” Antioxidants and Redox Signaling, vol. 12, no. 8, pp. 961–1008, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Raha and B. H. Robinson, “Mitochondria, oxygen free radicals, disease and ageing,” Trends in Biochemical Sciences, vol. 25, no. 10, pp. 502–508, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. A. I. Al-Ayash and M. T. Wilson, “The mechanism of reduction of single-site redox proteins by ascorbic acid,” Biochemical Journal, vol. 177, no. 2, pp. 641–648, 1979. View at Google Scholar · View at Scopus
  22. D. Njus, M. Wigle, P. M. Kelley, B. H. Kipp, and H. B. Schlegel, “Mechanism of ascorbic acid oxidation by cytochrome b561,” Biochemistry, vol. 40, no. 39, pp. 11905–11911, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. A. P. Halestrap, K. Y. Woodfield, and C. P. Connern, “Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase,” The Journal of Biological Chemistry, vol. 272, no. 6, pp. 3346–3354, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. I. N. Pessah, K. H. Kim, and W. Feng, “Redox sensing properties of the ryanodine receptor complex,” Frontiers in Bioscience, vol. 7, pp. a72–a79, 2002. View at Google Scholar · View at Scopus
  25. A. A. Starkov and G. Fiskum, “Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state,” Journal of Neurochemistry, vol. 86, no. 5, pp. 1101–1107, 2003. View at Google Scholar · View at Scopus
  26. G. G. Martinovich, I. V. Martinovich, E. N. Golubeva, and S. N. Cherenkevich, “Role of hydrogen ions in the regulation of the redox state of erythrocytes,” Biofizika, vol. 54, no. 5, pp. 846–851, 2009. View at Google Scholar · View at Scopus
  27. A. Y. Andreyev, Y. E. Kushnareva, and A. A. Starkov, “Mitochondrial metabolism of reactive oxygen species,” Biochemistry, vol. 70, no. 2, pp. 200–214, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. A. A. Starkov, “The role of mitochondria in reactive oxygen species metabolism and signaling,” Annals of the New York Academy of Sciences, vol. 1147, pp. 37–52, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Giorgio, E. Migliaccio, F. Orsini et al., “Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis,” Cell, vol. 122, no. 2, pp. 221–233, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. L. S. Terada, “Specificity in reactive oxidant signaling: think globally, act locally,” Journal of Cell Biology, vol. 174, no. 5, pp. 615–623, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Simonnet, N. Alazard, K. Pfeiffer et al., “Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma,” Carcinogenesis, vol. 23, no. 5, pp. 759–768, 2002. View at Google Scholar · View at Scopus