Table of Contents
Journal of Biophysics
Volume 2013, Article ID 192026, 8 pages
http://dx.doi.org/10.1155/2013/192026
Review Article

Comparative Trace Elemental Analysis in Cancerous and Noncancerous Human Tissues Using PIXE

Ion Beam Modification and Analysis Laboratory, Physics Department, University of North Texas, 1155 Union Circle, No. 311427, Denton, TX 76203, USA

Received 10 March 2013; Accepted 29 April 2013

Academic Editor: Janos K. Lanyi

Copyright © 2013 Stephen Juma Mulware. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Ames and K. Shigenaga, “Oxidative stress is a major contribution to aging,” Annals of the New York Academy of Sciences, vol. 663, pp. 85–96, 1992. View at Publisher · View at Google Scholar
  2. D. Beyersmann and A. Hartwig, “Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms,” Archives of Toxicology, vol. 82, no. 8, pp. 493–512, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. E. L. Feinendegen and K. Kasperek, “Medical aspects of trace element research,” in Trace Element Analytical Chemistry in Medicine and Biology, P. Bratter and P. Schramel, Eds., pp. 1–36, Walter de Gruyter, Berlin, Germany, 1980. View at Google Scholar
  4. M. Yaman, “Comprehensive comparison of trace metal concentrations in cancerous and non-cancerous human tissues,” Current Medicinal Chemistry, vol. 13, no. 21, pp. 2513–2525, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. D. S. Auld, “Zinc coordination sphere in biochemical zinc sites,” BioMetals, vol. 14, no. 3-4, pp. 271–313, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Kovacic and J. D. Jacintho, “Mechanisms of carcinogenesis: focus on oxidative stress and electron transfer,” Current Medicinal Chemistry, vol. 8, no. 7, pp. 773–796, 2001. View at Google Scholar · View at Scopus
  7. H. Merzenich, A. Hartwig, W. Ahrens et al., “Biomonitoring on carcinogenic metals and oxidative DNA damage in a cross-sectional study,” Cancer Epidemiology Biomarkers and Prevention, vol. 10, no. 5, pp. 515–522, 2001. View at Google Scholar · View at Scopus
  8. Y. Wang, J. Fang, S. S. Leonard, and K. M. K. Rao, “Cadmium inhibits the electron transfer chain and induces reactive oxygen species,” Free Radical Biology and Medicine, vol. 36, no. 11, pp. 1434–1443, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. International Agency for Research on Cancer, IARC Monographs on the Evaluation of Carcinogenic. Risks of Chemicals to Humans, vol. 1-2, supplement 7, IARC Scientific Publications, Lyon, France, 1984.
  10. International Agency for Research on Cancer, IARC Be, Cd, Hg, and Exposures in the Glass Manufacturing Industry, IARC Monographs on the Evaluation of Carcinogenic Risks of Chemicals to Humans, vol. 58, IARC Scientific Publications, Lyon, France, 1993.
  11. T. B. Kryston, A. B. Georgiev, P. Pissis, and A. G. Georgakilas, “Role of oxidative stress and DNA damage in human carcinogenesis,” Mutation Research—Fundamental and Molecular Mechanisms of Mutagenesis, vol. 711, no. 1-2, pp. 193–201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Valko, H. Morris, and M. T. D. Cronin, “Metals, toxicity and oxidative stress,” Current Medicinal Chemistry, vol. 12, no. 10, pp. 1161–1208, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. A. A. Konsta, E. E. Visvardis, K. S. Haveles, A. G. Georgakilas, and E. G. Sideris, “Detecting radiation-induced DNA damage: from changes in dielectric properties to programmed cell death,” Journal of Non-Crystalline Solids, vol. 305, no. 1–3, pp. 295–302, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. V. K. Shukla, T. K. Adukia, S. P. Singh, C. P. Mishra, and R. N. Mishra, “Micronutrients, antioxidants, and carcinoma of the gallbladder,” Journal of Surgical Oncology, vol. 84, no. 1, pp. 31–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Lim, G. E. Wuenschell, V. Holland et al., “Peroxyl radical mediated oxidative DNA base damage: implications for lipid peroxidation induced mutagenesis,” Biochemistry, vol. 43, no. 49, pp. 15339–15348, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Gillard, M. Begusova, B. Castaing, and M. Spotheim-Maurizot, “Radiation affects binding of Fpg repair protein to an abasic site containing DNA,” Radiation Research, vol. 162, no. 5, pp. 566–571, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Geraki, M. J. Farquharson, D. A. Bradley, and R. P. Hugtenburg, “A synchrotron XRF study on trace elements and potassium in breast tissue,” Nuclear Instruments and Methods in Physics Research B, vol. 213, pp. 564–568, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. D. R. Cousens, S. H. Ryan, and W. L. Griffin, “Self absorption and secondary fluorescence corrections of PIXE yields from multilayered targets,” in Proceedings of 5th Australian Conference on Nuclear Techniques of Analysis, pp. 58–60, Lucas Heights, Sydney, 1987.
  19. J. A. Maxwell, W. J. Teesdale, and J. I. Campbell, “The Guelph PIXE software package,” Nuclear Instruments and Methods in Physics Research B, vol. 43, pp. 218–230, 1989. View at Google Scholar
  20. C. G. Ryan, Quantitative Trace Element Imaging Using PIXE and the Nuclear Microprobe, John Wiley & Sons, North Ryde, Australia, 2001.
  21. C. G. Ryan, D. R. Cousens, S. H. Sie, W. L. Griffin, G. F. Suter, and E. Clayton, “Quantitative pixe microanalysis of geological matemal using the CSIRO proton microprobe,” Nuclear Instruments and Methods in Physics Research B, vol. 47, no. 1, pp. 55–71, 1990. View at Google Scholar · View at Scopus
  22. S. E. Johansson and J. L. Campbell, PIXE-A Novel Technique for Elemental Analysis, John Wiley & Sons, Chichester, UK, 1988.
  23. S. Boissier, M. Ferreras, O. Peyruchaud et al., “Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases,” Cancer Research, vol. 60, no. 11, pp. 2949–2954, 2000. View at Google Scholar · View at Scopus
  24. G. J. N. Raju, P. Sarita, M. R. Kumar et al., “Trace elemental correlation study in malignant and normal breast tissue by PIXE technique,” Nuclear Instruments and Methods in Physics Research B, vol. 247, no. 2, pp. 361–367, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Geraki, M. J. Farquharson, and D. A. Bradley, “X-ray fluorescence and energy dispersive x-ray diffraction for the quantification of elemental concentrations in breast tissue,” Physics in Medicine and Biology, vol. 49, no. 1, pp. 99–110, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. H. W. Kuo, S. F. Chen, C. C. Wu, D. R. Chen, and J. H. Lee, “Serum and tissue trace elements in patients with breast cancer in Taiwan,” Biological Trace Element Research, vol. 89, no. 1, pp. 1–11, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. K. H. Ng, D. A. Bradley, and L. M. Looi, “Elevated trace element concentrations in malignant breast tissues,” British Journal of Radiology, vol. 70, pp. 375–382, 1997. View at Google Scholar · View at Scopus
  28. M. Sugiyama, “Role of physiological antioxidants in chromium(VI)-induced cellular injury,” Free Radical Biology & Medicine, vol. 12, no. 5, pp. 397–407, 1992. View at Google Scholar
  29. S. de Flora, M. Bagnasco, D. Serra, and P. Zanacchi, “Genotoxicity of chromium compounds. A review,” Mutation Research, vol. 238, no. 2, pp. 99–172, 1990. View at Google Scholar · View at Scopus
  30. J. Ye, X. Zhang, H. A. Young, Y. Mao, and X. Shi, “Chromium (IV)-induced nuclear factor-κB activation in intact cells via free radical reaction,” Carcinogenesis, vol. 16, pp. 2401–2405, 1995. View at Google Scholar
  31. L. L. Miller, S. C. Miller, S. Y. Torti, Y. Tsuji, and F. M. Torti, “Iron-independent induction of ferritin H chain by tumor necrosis factor,” Proceedings of the National Academy of the United States of America, vol. 88, no. 11, pp. 4946–4950, 1991. View at Publisher · View at Google Scholar
  32. E. D. Weinberg, “Iron loading and disease surveillance,” Emerging Infectious Diseases, vol. 5, no. 3, pp. 346–352, 1999. View at Google Scholar · View at Scopus
  33. D. Armendariz and A. D. Vulpe, “11th International Symposium on Trace Elements in Man and Animals Abstracts,” The Journal of Nutrition, vol. 133, no. 5, pp. 203E–282E, 2003. View at Google Scholar
  34. P. Sarita, G. J. Raju, A. S. Pradeep, T. R. Rutray, B. S. Reddy, and V. Vijayan, “Analysis of trace elements in blood sera of breast cancer patients by particle induced X-ray emission,” Journal of Radioanalytical and Nuclear Chemistry, vol. 294, no. 3, pp. 355–361, 2012. View at Google Scholar
  35. K. Geraki, M. J. Farquharson, and D. A. Bradley, “Concentrations of Fe, Cu and Zn in breast tissue: a synchrotron XRF study,” Physics in Medicine and Biology, vol. 47, no. 13, pp. 2327–2339, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. S. B. Reddy, M. J. Charles, M. R. Kumar et al., “Trace elemental analysis of adenoma and carcinoma thyroid by PIXE method,” Nuclear Instruments and Methods in Physics Research B, vol. 196, no. 3-4, pp. 333–339, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Maeda, Y. Yokode, Y. Sasa, H. Kusuyama, and A. M. Uda, “Multielemental analysis of human thyroid glands using particle induced X-ray emission (PIXE),” Nuclear Instruments and Methods in Physics Research B, vol. 22, no. 1–3, pp. 188–190, 1987. View at Google Scholar · View at Scopus
  38. M. Uda, K. Maeda, Y. Yokode Y, Sasa, and H. Kusuyama, “An attempt to diagnose cancer by PIXE,” Nuclear Instruments and Methods in Physics Research B, vol. 22, no. 1 3, pp. 184–187, 1987. View at Google Scholar
  39. X. Zeng, M. Yao, M. Mu et al., “An attempt to diagnose cancer by PIXE,” Nuclear Instruments and Methods in Physics Research B, vol. 22, no. 1–3, pp. 184–187, 1987. View at Publisher · View at Google Scholar
  40. S. B. Reddy, M. J. Charles, G. J. N. Raju et al., “Trace elemental analysis of carcinoma kidney and stomach by PIXE method,” Nuclear Instruments and Methods in Physics Research B, vol. 207, no. 3, pp. 345–355, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. W. M. Kwiatek, T. Drewniak, M. Gajda, M. Gałka, A. L. Hanson, and T. Cichocki, “Preliminary study on the distribution of selected elements in cancerous and non-cancerous kidney tissues,” Journal of Trace Elements in Medicine and Biology, vol. 16, no. 3, pp. 155–160, 2002. View at Google Scholar · View at Scopus
  42. I. Bertini, H. B. Gray, S. J. Lippard, and J. S. Valentine, Bioinorganic Chemistry, Viva Books Private, 1989.
  43. H. Sigel, Ed., Carcinogenicity and Metal Ions, vol. 10 of Metal Ions in Biological Systems, Marcel Dekker, New York, NY, USA, 1980.
  44. A. M. Standeven and K. E. Wetterhahn, “Chromium(VI) toxicity: uptake, reduction, and DNA damage,” Journal of the American College of Toxicology, vol. 8, no. 7, pp. 1275–1283, 1989. View at Google Scholar · View at Scopus
  45. G. J. N. Raju, M. J. Charles, S. B. Reddy et al., “Trace elemental analysis in cancer-afflicted tissues of penis and testis by PIXE technique,” Nuclear Instruments and Methods in Physics Research B, vol. 229, no. 3-4, pp. 457–464, 2005. View at Publisher · View at Google Scholar · View at Scopus