Table of Contents Author Guidelines Submit a Manuscript
Journal of Blood Transfusion
Volume 2012 (2012), Article ID 317632, 10 pages
http://dx.doi.org/10.1155/2012/317632
Review Article

State of the Art in Stem Cell Research: Human Embryonic Stem Cells, Induced Pluripotent Stem Cells, and Transdifferentiation

The New York Stem Cell Foundation, 1995 Broadway, New York, NY 10032, USA

Received 9 February 2012; Revised 23 May 2012; Accepted 24 May 2012

Academic Editor: Tanja Dominko

Copyright © 2012 Giuseppe Maria de Peppo and Darja Marolt. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. L. Weissman, “Stem cells: units of development, units of regeneration, and units in evolution,” Cell, vol. 100, no. 1, pp. 157–168, 2000. View at Google Scholar · View at Scopus
  2. S. Sell, Stem Cells Handbook, Humana Press, Totowa, NJ, USA, 2004.
  3. A. J. Becker, E. A. McCulloch, and J. E. Till, “Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells,” Nature, vol. 197, no. 4866, pp. 452–454, 1963. View at Publisher · View at Google Scholar · View at Scopus
  4. D. T. Scadden, “The stem-cell niche as an entity of action,” Nature, vol. 441, no. 7097, pp. 1075–1079, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Nakahara, V. M. Goldberg, and A. I. Caplan, “Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo,” Journal of Orthopaedic Research, vol. 9, no. 4, pp. 465–476, 1991. View at Google Scholar · View at Scopus
  7. P. A. Zuk, M. Zhu, P. Ashjian et al., “Human adipose tissue is a source of multipotent stem cells,” Molecular Biology of the Cell, vol. 13, no. 12, pp. 4279–4295, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. J. T. Williams, S. S. Southerland, J. Souza, A. F. Calcutt, and R. G. Cartledge, “Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes,” American Surgeon, vol. 65, no. 1, pp. 22–26, 1999. View at Google Scholar · View at Scopus
  9. C. De Bari, F. Dell'Accio, P. Tylzanowski, and F. P. Luyten, “Multipotent mesenchymal stem cells from adult human synovial membrane,” Arthritis & Rheumatism, vol. 44, no. 8, pp. 1928–1942, 2001. View at Google Scholar
  10. O. K. Lee, T. K. Kuo, W. M. Chen, K. D. Lee, S. L. Hsieh, and T. H. Chen, “Isolation of multipotent mesenchymal stem cells from umbilical cord blood,” Blood, vol. 103, no. 5, pp. 1669–1675, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Secco, E. Zucconi, N. M. Vieira et al., “Multipotent stem cells from umbilical cord: cord is richer than blood!,” Stem Cells, vol. 26, no. 1, pp. 146–150, 2008. View at Publisher · View at Google Scholar
  12. Y. Fukuchi, H. Nakajima, D. Sugiyama, I. Hirose, T. Kitamura, and K. Tsuji, “Human placenta-derived cells have mesenchymal stem/progenitor cell potential,” Stem Cells, vol. 22, no. 5, pp. 649–658, 2004. View at Google Scholar · View at Scopus
  13. M. Krampera, M. Franchini, G. Pizzolo, and G. Aprili, “Mesenchymal stem cells: from biology to clinical use,” Blood Transfusion, vol. 5, no. 3, pp. 120–129, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Wagner, F. Wein, A. Seckinger et al., “Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood,” Experimental Hematology, vol. 33, no. 11, pp. 1402–1416, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Noël, D. Caton, S. Roche et al., “Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials,” Experimental Cell Research, vol. 314, no. 7, pp. 1575–1584, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. A. Baxter, R. F. Wynn, S. N. Jowitt, J. E. Wraith, L. J. Fairbairn, and I. Bellantuono, “Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion,” Stem Cells, vol. 22, no. 5, pp. 675–682, 2004. View at Google Scholar · View at Scopus
  17. M. M. Bonab, K. Alimoghaddam, F. Talebian, S. H. Ghaffari, A. Ghavamzadeh, and B. Nikbin, “Aging of mesenchymal stem cell in vitro,” BMC Cell Biology, vol. 7, article 14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Wagner, P. Horn, M. Castoldi et al., “Replicative senescence of mesenchymal stem cells: a continuous and organized process,” PLoS ONE, vol. 3, no. 5, Article ID e2213, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. M. Chambers, C. A. Shaw, C. Gatza, C. J. Fisk, L. A. Donehower, and M. A. Goodell, “Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation,” PLoS Biology, vol. 5, no. 8, Article ID e201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Zhou, J. S. Greenberger, M. W. Epperly et al., “Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts,” Aging Cell, vol. 7, no. 3, pp. 335–343, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro et al., “Embryonic stem cell lines derived from human blastocysts,” Science, vol. 282, no. 5391, pp. 1145–1147, 1998. View at Google Scholar · View at Scopus
  22. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Gavrilov, D. Marolt, N. C. Douglas et al., “Derivation of two new human embryonic stem cell lines from nonviable human embryos,” Stem Cells International, vol. 2011, Article ID 765378, 9 pages, 2011. View at Publisher · View at Google Scholar
  24. I. Klimanskaya, Y. Chung, S. Becker, S. J. Lu, and R. Lanza, “Human embryonic stem cell lines derived from single blastomeres,” Nature, vol. 444, no. 7118, pp. 481–485, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. P. H. Lerou, A. Yabuuchi, H. Huo et al., “Human embryonic stem cell derivation from poor-quality embryos,” Nature Biotechnology, vol. 26, no. 2, pp. 212–214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Zhang, P. Stojkovic, S. Przyborski et al., “Derivation of human embryonic stem cells from developing and arrested embryos,” Stem Cells, vol. 24, no. 12, pp. 2669–2676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. A. E. Chen, D. Egli, K. Niakan et al., “Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines,” Cell Stem Cell, vol. 4, no. 2, pp. 103–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Richards, C. Y. Fong, W. K. Chan, P. C. Wong, and A. Bongso, “Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells,” Nature Biotechnology, vol. 20, no. 9, pp. 933–936, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Bigdeli, M. Andersson, R. Strehl et al., “Adaptation of human embryonic stem cells to feeder-free and matrix-free culture conditions directly on plastic surfaces,” Journal of Biotechnology, vol. 133, no. 1, pp. 146–153, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. S. R. Braam, L. Zeinstra, S. Litjens et al., “Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via αVβ5 integrin,” Stem Cells, vol. 26, no. 9, pp. 2257–2265, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Jaenisch and R. Young, “Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming,” Cell, vol. 132, no. 4, pp. 567–582, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. T. E. Ludwig, M. E. Levenstein, J. M. Jones et al., “Derivation of human embryonic stem cells in defined conditions,” Nature Biotechnology, vol. 24, no. 2, pp. 185–187, 2006. View at Publisher · View at Google Scholar
  33. K. Watanabe, M. Ueno, D. Kamiya et al., “A ROCK inhibitor permits survival of dissociated human embryonic stem cells,” Nature Biotechnology, vol. 25, no. 6, pp. 681–686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. D. E. Kehoe, D. Jing, L. T. Lock, and E. S. Tzanakakis, “Scalable stirred-suspension bioreactor culture of human pluripotent stem cells,” Tissue Engineering A, vol. 16, no. 2, pp. 405–421, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. O. Adewumi, B. Aflatoonian, L. Ahrlund-Richter et al., “Characterization of human embryonic stem cell lines by the International Stem Cell Initiative,” Nature Biotechnology, vol. 25, no. 7, pp. 803–816, 2007. View at Publisher · View at Google Scholar
  36. A. Maitra, D. E. Arking, N. Shivapurkar et al., “Genomic alterations in cultured human embryonic stem cells,” Nature Genetics, vol. 37, no. 10, pp. 1099–1103, 2005. View at Publisher · View at Google Scholar
  37. J. S. Draper, K. Smith, P. Gokhale et al., “Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells,” Nature Biotechnology, vol. 22, no. 1, pp. 53–54, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. C. B. Ware, A. M. Nelson, and C. A. Blau, “A comparison of NIH-approved human ESC lines,” Stem Cells, vol. 24, no. 12, pp. 2677–2684, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. J. B. Gurdon, T. R. Elsdale, and M. Fischberg, “Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei,” Nature, vol. 182, no. 4627, pp. 64–65, 1958. View at Publisher · View at Google Scholar · View at Scopus
  40. I. Wilmut, A. E. Schnieke, J. McWhir, A. J. Kind, and K. H. S. Campbell, “Viable offspring derived from fetal and adult mammalian cells,” Nature, vol. 385, no. 6619, pp. 810–813, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Hochedlinger and R. Jaenisch, “Monoclonal mice generated by nuclear transfer from mature B and T donor cells,” Nature, vol. 415, no. 6875, pp. 1035–1038, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. B. C. Lee, M. K. Kim, G. Jang et al., “Dogs cloned from adult somatic cells.,” Nature, vol. 436, no. 7051, 641. View at Google Scholar · View at Scopus
  43. T. Shin, D. Kraemer, J. Pryor et al., “A cat cloned by nuclear transplantation,” Nature, vol. 415, no. 6874, p. 859, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Noggle, H.-L. Fung, A. Gore et al., “Human oocytes reprogram somatic cells to a pluripotent state,” Nature, vol. 478, no. 7367, pp. 70–75, 2011. View at Publisher · View at Google Scholar
  45. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Junying, H. Kejin, S. O. Kim et al., “Human induced pluripotent stem cells free of vector and transgene sequences,” Science, vol. 324, no. 5928, pp. 797–801, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Woltjen, I. P. Michael, P. Mohseni et al., “PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells,” Nature, vol. 458, no. 7239, pp. 766–770, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Zhou, S. Wu, J. Y. Joo et al., “Generation of induced pluripotent stem cells using recombinant proteins,” Cell Stem Cell, vol. 4, no. 5, pp. 381–384, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. X. Meng, A. Neises, R.-J. Su et al., “Efficient reprogramming of human cord blood CD34+ cells into induced pluripotent stem cells with OCT4 and SOX2 alone,” Molecular Therapy, vol. 20, no. 2, pp. 408–416, 2012. View at Publisher · View at Google Scholar
  50. J. K. Ichida, J. Blanchard, K. Lam et al., “A small-molecule inhibitor of Tgf-β signaling replaces Sox2 in reprogramming by inducing Nanog,” Cell Stem Cell, vol. 5, no. 5, pp. 491–503, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Warren, P. D. Manos, T. Ahfeldt et al., “Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA,” Cell Stem Cell, vol. 7, no. 5, pp. 618–630, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Osafune, L. Caron, M. Borowiak et al., “Marked differences in differentiation propensity among human embryonic stem cell lines,” Nature Biotechnology, vol. 26, no. 3, pp. 313–315, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Wu, J. Xu, Z. P. Pang et al., “Integrative genomic and functional analyses reveal neuronal subtype differentiation bias in human embryonic stem cell lines,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 34, pp. 13821–13826, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. K. H. Narsinh, N. Sun, V. Sanchez-Freire et al., “Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells,” Journal of Clinical Investigation, vol. 121, no. 3, pp. 1217–1221, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. K. H. Narsinh, J. Plews, and J. C. Wu, “Comparison of human induced pluripotent and embryonic stem cells: fraternal or identical twins?” Molecular Therapy, vol. 19, no. 4, pp. 635–638, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. G. L. Boulting, E. Kiskinis, G. F. Croft et al., “A functionally characterized test set of human induced pluripotent stem cells,” Nature Biotechnology, vol. 29, no. 3, pp. 279–286, 2011. View at Publisher · View at Google Scholar
  57. C. Bock, E. Kiskinis, G. Verstappen et al., “Reference maps of human es and ips cell variation enable high-throughput characterization of pluripotent cell lines,” Cell, vol. 144, no. 3, pp. 439–452, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Kim, R. Zhao, A. Doi et al., “Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells,” Nature Biotechnology, vol. 29, no. 12, pp. 1117–1119, 2011. View at Publisher · View at Google Scholar
  59. A. Pires-daSilva and R. J. Sommer, “The evolution of signalling pathways in animal development,” Nature Reviews Genetics, vol. 4, no. 1, pp. 39–49, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. P. P. L. Tam and D. A. F. Loebel, “Gene function in mouse embryogenesis: get set for gastrulation,” Nature Reviews Genetics, vol. 8, no. 5, pp. 368–381, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. C. E. Murry and G. Keller, “Differentiation of embryonic stem cells toclinically relevant populations: lessons from embryonic development,” Cell, vol. 132, no. 4, pp. 661–680, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. P. Braude, V. Bolton, and S. Moore, “Human gene expression first occurs between the four- and eight-cell stages of preimplantation development,” Nature, vol. 332, no. 6163, pp. 459–461, 1988. View at Google Scholar · View at Scopus
  63. F. Fougerousse, P. Bullen, M. Herasse et al., “Human-mouse differences in the embryonic expression patterns of developmental control genes and disease genes,” Human Molecular Genetics, vol. 9, no. 2, pp. 165–173, 2000. View at Google Scholar · View at Scopus
  64. I. Ginis, Y. Luoa, T. Miura et al., “Differences between human and mouse embryonic stem cells,” Developmental Biology, vol. 269, no. 2, pp. 360–380, 2004. View at Publisher · View at Google Scholar
  65. P. J. Tesar, J. G. Chenoweth, F. A. Brook et al., “New cell lines from mouse epiblast share defining features with human embryonic stem cells,” Nature, vol. 448, no. 7150, pp. 196–199, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Itskovitz-Eldor, M. Schuldiner, D. Karsenti et al., “Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers,” Molecular Medicine, vol. 6, no. 2, pp. 88–95, 2000. View at Google Scholar · View at Scopus
  67. M. Borowiak, R. Maehr, S. Chen et al., “Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells,” Cell Stem Cell, vol. 4, no. 4, pp. 348–358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. F. P. Di Giorgio, G. L. Boulting, S. Bobrowicz, and K. C. Eggan, “Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation,” Cell Stem Cell, vol. 3, no. 6, pp. 637–648, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. X. J. Li, Z.-W. Du, E. D. Zarnowska et al., “Specification of motoneurons from human embryonic stem cells,” Nature Biotechnology, vol. 23, no. 2, pp. 215–221, 2005. View at Publisher · View at Google Scholar
  70. L. Yang, M. H. Soonpaa, E. D. Adler et al., “Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population,” Nature, vol. 453, no. 7194, pp. 524–528, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. E. Kroon, L. A. Martinson, K. Kadoya et al., “Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo,” Nature Biotechnology, vol. 26, no. 4, pp. 443–452, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. D. Zhang, W. Jiang, M. Liu et al., “Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells,” Cell Research, vol. 19, no. 4, pp. 429–438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Cai, Y. Zhao, Y. Liu et al., “Directed differentiation of human embryonic stem cells into functional hepatic cells,” Hepatology, vol. 45, no. 5, pp. 1229–1239, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. J. T. Dimos, K. T. Rodolfa, K. K. Niakan et al., “Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons,” Science, vol. 321, no. 5893, pp. 1218–1221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Moretti, M. Bellin, A. Welling et al., “Patient-specific induced pluripotent stem-cell models for long-QT syndrome,” The New England Journal of Medicine, vol. 363, no. 15, pp. 1397–1409, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. C. L. Bauwens, R. Peerani, S. Niebruegge et al., “Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories,” Stem Cells, vol. 26, no. 9, pp. 2300–2310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. R. Peerani, B. M. Rao, C. Bauwens et al., “Niche-mediated control of human embryonic stem cell self-renewal and differentiation,” EMBO Journal, vol. 26, no. 22, pp. 4744–4755, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. L. Carpenter, C. Carr, C. T. Yang et al., “Efficient differentiation of human induced pluripotent stem cells generates cardiac cells which provide protection following myocardial infarction in the rat,” Stem Cells and Development, vol. 21, no. 6, pp. 977–986, 2012. View at Publisher · View at Google Scholar
  79. D. James, H. S. Nam, M. Seandel et al., “Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFβ inhibition is Id1 dependent,” Nature Biotechnology, vol. 28, no. 2, pp. 161–166, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. M. A. Israel, S. H. Yuan, C. Bardy et al., “Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells,” Nature, vol. 482, no. 7384, pp. 216–220, 2012. View at Google Scholar
  81. F. Soldner, J. Laganière, A. W. Cheng et al., “Generation of isogenic pluripotent stem cells differing exclusively at two early onset parkinson point mutations,” Cell, vol. 146, no. 2, pp. 318–331, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. K. J. Brennand, A. Simone, J. Jou et al., “Modelling schizophrenia using human induced pluripotent stem cells,” Nature, vol. 473, no. 7346, pp. 221–225, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. R. Maehr, S. Chen, M. Snitow et al., “Generation of pluripotent stem cells from patients with type 1 diabetes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 37, pp. 15768–15773, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. I. H. Park, N. Arora, H. Huo et al., “Disease-specific induced pluripotent stem cells,” Cell, vol. 134, no. 5, pp. 877–886, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. A. M. Wobus and P. Löser, “Present state and future perspectives of using pluripotent stem cells in toxicology research,” Archives of Toxicology, vol. 85, no. 2, pp. 79–117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. S. R. Braam, L. Tertoolen, A. van de Stolpe, T. Meyer, R. Passier, and C. L. Mummery, “Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes,” Stem Cell Research, vol. 4, no. 2, pp. 107–116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. O. Caspi, I. Itzhaki, I. Kehat et al., “In vitro electrophysiological drug testing using human embryonic stem cell derived cardiomyocytes,” Stem Cells and Development, vol. 18, no. 1, pp. 161–172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. R. Langer and J. P. Vacanti, “Tissue engineering,” Science, vol. 260, no. 5110, pp. 920–926, 1993. View at Google Scholar · View at Scopus
  89. D. Eberli and A. Atala, “Tissue engineering using adult stem cells,” Methods in Enzymology, vol. 420, pp. 287–302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. G. M. de Peppo, P. Sjovall, M. Lennerås et al., “Osteogenic potential of human mesenchymal stem cells and human embryonic stem cell-derived mesodermal progenitors: a tissue engineering perspective,” Tissue Engineering A, vol. 16, no. 11, pp. 3413–3426, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. C. Karlsson, K. Emanuelsson, F. Wessberg et al., “Human embryonic stem cell-derived mesenchymal progenitors—potential in regenerative medicine,” Stem Cell Research, vol. 3, no. 1, pp. 39–50, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. B. E. Reubinoff, P. Itsykson, T. Turetsky et al., “Neural progenitors from human embryonic stem cells,” Nature Biotechnology, vol. 19, no. 12, pp. 1134–1140, 2001. View at Publisher · View at Google Scholar · View at Scopus
  93. G. M. De Peppo, S. Svensson, M. Lennerås et al., “Human embryonic mesodermal progenitors highly resemble human mesenchymal stem cells and display high potential for tissue engineering applications,” Tissue Engineering A, vol. 16, no. 7, pp. 2161–2182, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. W. Gruenloh, A. Kambal, C. Sondergaard et al., “Characterization and in vivo testing of mesenchymal stem cells derived from human embryonic stem cells,” Tissue Engineering A, vol. 17, no. 11-12, pp. 1517–1525, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. D. Marolt et al., “Engineering bone tissue from human embryonic stem cells,” Proceedings of the National Academy of Sciences, vol. 109, no. 22, pp. 8705–8709, 2012. View at Publisher · View at Google Scholar
  96. J. Kaiser, “Embryonic stem cells. Researchers mull impact of Geron's sudden exit from field,” Science, vol. 334, no. 6059, p. 1043, 2011. View at Publisher · View at Google Scholar
  97. S. D. Schwartz, J.-P. Hubschman, G. Heilwell et al., “Embryonic stem cell trials for macular degeneration: a preliminary report,” The Lancet, vol. 379, no. 9817, pp. 713–720, 2012. View at Publisher · View at Google Scholar
  98. D. R. Deyle, I. F. Khan, G. Ren et al., “Normal collagen and bone production by gene-targeted human osteogenesis imperfecta iPSCs,” Molecular Therapy, vol. 20, no. 1, pp. 204–213, 2012. View at Publisher · View at Google Scholar
  99. K. Yusa, S. Tamir Rashid, H. Strick-Marchand et al., “Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells,” Nature, vol. 478, no. 7369, pp. 391–394, 2011. View at Publisher · View at Google Scholar
  100. J. Zou, C. L. Sweeney, B. K. Chou et al., “Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease-mediated safe harbor targeting,” Blood, vol. 117, no. 21, pp. 5561–5572, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. Q. Zhou and D. A. Melton, “Extreme makeover: converting one cell into another,” Cell Stem Cell, vol. 3, no. 4, pp. 382–388, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. C. Jopling, S. Boue, and J. C. I. Belmonte, “Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration,” Nature Reviews Molecular Cell Biology, vol. 12, no. 2, pp. 79–89, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. H. Weintraub, S. J. Tapscott, R. L. Davis et al., “Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 14, pp. 5434–5438, 1989. View at Google Scholar · View at Scopus
  104. Q. Zhou, J. Brown, A. Kanarek, J. Rajagopal, and D. A. Melton, “In vivo reprogramming of adult pancreatic exocrine cells to β-cells,” Nature, vol. 455, no. 7213, pp. 627–632, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. T. Vierbuchen, A. Ostermeier, Z. P. Pang, Y. Kokubu, T. C. Südhof, and M. Wernig, “Direct conversion of fibroblasts to functional neurons by defined factors,” Nature, vol. 463, no. 7284, pp. 1035–1041, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. S. Marro, Z. P. Pang, N. Yang et al., “Direct lineage conversion of terminally differentiated hepatocytes to functional neurons,” Cell Stem Cell, vol. 9, no. 4, pp. 374–382, 2011. View at Publisher · View at Google Scholar
  107. Y. Xu, Y. Shi, and S. Ding, “A chemical approach to stem-cell biology and regenerative medicine,” Nature, vol. 453, no. 7193, pp. 338–344, 2008. View at Publisher · View at Google Scholar · View at Scopus