Table of Contents Author Guidelines Submit a Manuscript
Journal of Combustion
Volume 2012 (2012), Article ID 285185, 14 pages
http://dx.doi.org/10.1155/2012/285185
Research Article

Composition of Algal Oil and Its Potential as Biofuel

1Department of Research and Innovation, EnBW Energie Baden-Württemberg AG, Durlacher Allee 93, 76131 Karlsruhe, Germany
2Division of Bioprocess Engineering, Institute of Life Sciences, KIT Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

Received 8 November 2011; Revised 16 December 2011; Accepted 29 January 2012

Academic Editor: Panagiotis Grammelis

Copyright © 2012 Pascal Schlagermann et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. IEA, “Key world energy statistics 2011,” 2011.
  2. P. Schenk et al., “Second generation biofuels: high-efficiency microalgae for biodiesel production,” BioEnergy Research, vol. 1, pp. 20–43, 2008. View at Google Scholar
  3. H. M. Amaro, A. C. Guedes, and F. X. Malcata, “Advances and perspectives in using microalgae to produce biodiesel,” Applied Energy, vol. 88, no. 10, pp. 3402–3410, 2011. View at Publisher · View at Google Scholar
  4. M. R. Tredici, “Photobiology of microalgae mass cultures: understanding the tools for the next green revolution,” Biofuels, vol. 1, no. 1, pp. 143–162, 2010. View at Publisher · View at Google Scholar
  5. C. de Fraiture, M. Giordano, and Y. Liao, “Biofuels and implications for agricultural water use: blue impacts of green energy,” Water Policy, vol. 10, no. 1, pp. 67–81, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C. F. Murphy and D. T. Allen, “Energy-water nexus for mass cultivation of algae,” Environmental Science and Technology, vol. 45, no. 13, pp. 5861–5868, 2011. View at Publisher · View at Google Scholar
  7. R. H. Wijffels and M. J. Barbosa, “An outlook on microalgal biofuels,” Science, vol. 329, no. 5993, pp. 796–799, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Morweiser, O. Kruse, B. Hankamer, and C. Posten, “Developments and perspectives of photobioreactors for biofuel production,” Applied Microbiology and Biotechnology, vol. 87, no. 4, pp. 1291–1301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. N. H. Norsker, M. J. Barbosa, M. H. Vermuë, and R. H. Wijffels, “Microalgal production - A close look at the economics,” Biotechnology Advances, vol. 29, no. 1, pp. 24–27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. S. Boyer, “Plant productivity and environment ( crop genetic improvement),” Science, vol. 218, no. 4571, pp. 443–448, 1982. View at Google Scholar · View at Scopus
  11. C. Posten and G. Schaub, “Microalgae and terrestrial biomass as source for fuels—a process view,” Journal of Biotechnology, vol. 142, no. 1, pp. 64–69, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Coombs, Ed., Appendix C: Biomass Production and Data, Techniques in Bioproductivity and Photosynthesis, Pergamon Press, Oxford, UK, 2nd edition, 1985.
  13. http://bicycle.wtbk.org/.
  14. L. Brennan and P. Owende, “Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products,” Renewable and Sustainable Energy Reviews, vol. 14, no. 2, pp. 557–577, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. J. Ramos, C. M. Fernández, A. Casas, L. Rodríguez, and Á. Pérez, “Influence of fatty acid composition of raw materials on biodiesel properties,” Bioresource Technology, vol. 100, no. 1, pp. 261–268, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Huerlimann, R. de Nys, and K. Heimann, “Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production,” Biotechnology and bioengineering, vol. 107, no. 2, pp. 245–257, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Jiang and K. Gao, “Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae),” Journal of Phycology, vol. 40, no. 4, pp. 651–654, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. N. O. Zhila, G. S. Kalacheva, and T. G. Volova, “Effect of salinity on the biochemical composition of the alga Botryococcus braunii Kütz IPPAS H-252,” Journal of Applied Phycology, pp. 1–6, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Sartori, “A critical review on equations employed for the calculation of the evaporation rate from free water surfaces,” Solar Energy, vol. 68, no. 1, pp. 77–89, 2000. View at Google Scholar · View at Scopus
  20. Roquette Klötze GmbH & Co. KG, Klötze, Germany, http://www.algomed.de/index.php?op=algenfarm.
  21. Algatechnologies, Ltd, Kibbutz Ketura, Israel, 1998, http://www.algatech.com/about.htm.
  22. D. O. Hall, F. G. Acién Fernández, E. C. Guerrero, K. K. Rao, and E. M. Grima, “Outdoor helical tubular photobioreactors for microalgal production: modeling of fluid-dynamics and mass transfer and assessment of biomass productivity,” Biotechnology and Bioengineering, vol. 82, no. 1, pp. 62–73, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Sánchez Mirón, M. C. Cerón García, F. García Camacho, E. Molina Grima, and Y. Chisti, “Growth and biochemical characterization of microalgal biomass produced in bubble column and airlift photobioreactors: studies in fed-batch culture,” Enzyme and Microbial Technology, vol. 31, no. 7, pp. 1015–1023, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Ripplinger, Industrielle Produktion von Mikroalgenbiomasse mit einem Flat-Panel-Airlift-Photobioreaktor, 5. Köthener Biotechnologie-Kolloquium, Köthen, Germany, 2009.
  25. D. Eyler and C. Posten, “Use of an algae bioreactor to reduce CO2 emissions and to produce biomass and/or biofuel,” European Institute for Energy Research Karlsruhe, Karlsruhe, Germany, 2009.
  26. E. Molina Grima, E. H. Belarbi, F. G. Acién Fernández, A. Robles Medina, and Y. Chisti, “Recovery of microalgal biomass and metabolites: process options and economics,” Biotechnology Advances, vol. 20, no. 7-8, pp. 491–515, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Sierra, F. G. Acién, J. M. Fernández, J. L. García, C. González, and E. Molina, “Characterization of a flat plate photobioreactor for the production of microalgae,” Chemical Engineering Journal, vol. 138, no. 1–3, pp. 136–147, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. H. C. Greenwell, L. M. L. Laurens, R. J. Shields, R. W. Lovitt, and K. J. Flynn, “Placing microalgae on the biofuels priority list: a review of the technological challenges,” Journal of the Royal Society Interface, vol. 7, no. 46, pp. 703–726, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Uduman, Y. Qi, M. K. Danquah, G. M. Forde, and A. Hoadley, “Dewatering of microalgal cultures: a major bottleneck to algae-based fuels,” Journal of Renewable and Sustainable Energy, vol. 2, no. 1, article 012701, 2010. View at Publisher · View at Google Scholar
  30. F. Müller-Langer et al., “Analyse und Evaluierung von Anlagen und Techniken zur Produktion von Biokraftstoffen,” Institute für Energy and Environment, Dresden, Germany, 2007.
  31. S. Schmidt, Wirtschaftliche perspektiven der CO2-bindung durch algen und photokatalyse, M.S. thesis, Duale Hochschule Karlsruhe, Karlsruhe, Germany, 2010.
  32. J. Li, D. Zhu, J. Niu, S. Shen, and G. Wang, “An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis,” Biotechnology Advances, vol. 29, no. 6, pp. 568–574, 2011. View at Publisher · View at Google Scholar
  33. K. K. Hildner, Konstruktion und Evaluation eines geschlossenen Plattenphotobioreaktors zur Kultivierung von Mikroalgen, M.S. thesis, University of Applied Sciences Amberg-Weiden, Hochschule, Germany, 2010.
  34. Solix BioSystems, Inc., Fort Collins, Colo, USA, http://www.solixbiofuels.com/.
  35. K. M. Weyer, D. R. Bush, A. Darzins, and B. D. Willson, “Theoretical maximum algal oil production,” Bioenergy Research, vol. 3, no. 2, pp. 204–213, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. Proviron Industries NV, Hemiksem, Belgium, http://www.proviron.com/showcase/latest-proviapt-evolution-inaugurated.
  37. J. U. Grobbelaar, L. Nedbal, and V. Tichy, “Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation,” Journal of Applied Phycology, vol. 8, no. 4-5, pp. 335–343, 1996. View at Google Scholar · View at Scopus
  38. G. A. Alexandrov and Y. Yamagata, “A peaked function for modeling temperature dependence of plant productivity,” Ecological Modelling, vol. 200, no. 1-2, pp. 189–192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. S. C. James and V. Boriah, “Modeling algae growth in an open-channel raceway,” Journal of Computational Biology, vol. 17, no. 7, pp. 895–906, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Quinn, L. de Winter, and T. Bradley, “Microalgae bulk growth model with application to industrial scale systems,” Bioresource Technology, vol. 102, no. 8, pp. 5083–5092, 2011. View at Publisher · View at Google Scholar
  41. R. Harun, M. Singh, G. M. Forde, and M. K. Danquah, “Bioprocess engineering of microalgae to produce a variety of consumer products,” Renewable and Sustainable Energy Reviews, vol. 14, no. 3, pp. 1037–1047, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. Evodos, 2011, http://www.evodos.eu/market-specific-solutions/totally-dewatering-algae.html.
  43. M. Thein, “The use of natural resource for sustainable production of Spirulina in Myanmar crater lakes,” in Proceedings of the 5th International Algae Congress, Microalgae & Biomass, Berlin, Germany, 2011.
  44. C. Posten, Principles of Mechanical Bioseparation, Shaker Verlag, Kaiserstraße, Germany, 2007.
  45. ANDRITZ KMPT GmbH, Vierkirchen, Germany, http://www.kmpt.com/nc/en/products/crossflow-filter-dcf/.
  46. Algaeventure systems, Marysville, Ohio, USA, http://algaevs.com/.
  47. GEA Mechanical Equipment, Düsseldorf, Germany, http://www.gea-mechanical-equipment.com/markets-products/products/separators.html.
  48. Seambiotic Ltd., Tel Aviv, Israel, http://www.seambiotic.com/home-2/.
  49. M. R. Ladisch, Bioseparations Engineering, Wiley Interscience, New York, NY, USA, 2001.
  50. L. Soh and J. Zimmerman, “Biodiesel production: the potential of algal lipids extracted with supercritical carbon dioxide,” Green Chemistry, vol. 13, no. 6, pp. 1422–1429, 2011. View at Publisher · View at Google Scholar
  51. J. Pruvost, G. Van Vooren, B. Le Gouic, A. Couzinet-Mossion, and J. Legrand, “Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application,” Bioresource Technology, vol. 102, no. 1, pp. 150–158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Bouaid, Y. Diaz, M. Martinez, and J. Aracil, “Pilot plant studies of biodiesel production using Brassica carinata as raw material,” Catalysis Today, vol. 106, no. 1–4, pp. 193–196, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. M. J. Haas, A. J. McAloon, W. C. Yee, and T. A. Foglia, “A process model to estimate biodiesel production costs,” Bioresource Technology, vol. 97, no. 4, pp. 671–678, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. J. M. N. van Kasteren and A. P. Nisworo, “A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification,” Resources, Conservation and Recycling, vol. 50, no. 4, pp. 442–458, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Bruton, H. Lyons, Y. Lerat, M. Stanley, and M. BoRasmussen, “A review of the potential of marine algae as a source of biofuel in Ireland,” Tech. Rep., Sustainable Energy Ireland, 2009. View at Google Scholar
  56. Z. Y. Wen and F. Chen, “Heterotrophic production of eicosapentaenoic acid by microalgae,” Biotechnology Advances, vol. 21, no. 4, pp. 273–294, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. B. Liu and Z. Zhao, “Biodiesel production by direct methanolysis of oleaginous microbial biomass,” Journal of Chemical Technology and Biotechnology, vol. 82, no. 8, pp. 775–780, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Singh, P. S. Nigam, and J. D. Murphy, “Mechanism and challenges in commercialisation of algal biofuels,” Bioresource Technology, vol. 102, no. 1, pp. 26–34, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Gryglewicz, “Rapeseed oil methyl esters preparation using heterogeneous catalysts,” Bioresource Technology, vol. 70, no. 3, pp. 249–253, 1999. View at Publisher · View at Google Scholar · View at Scopus
  60. G. J. Suppes, M. A. Dasari, E. J. Doskocil, P. J. Mankidy, and M. J. Goff, “Transesterification of soybean oil with zeolite and metal catalysts,” Applied Catalysis A, vol. 257, no. 2, pp. 213–223, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. L. B. Brentner, M. J. Eckelman, and J. B. Zimmerman, “Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel,” Environmental Science and Technology, vol. 45, no. 16, pp. 7060–7067, 2011. View at Publisher · View at Google Scholar
  62. R. B. Levine, T. Pinnarat, and P. E. Savage, “Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification,” Energy and Fuels, vol. 24, no. 9, pp. 5235–5243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. European Parliament Council, “Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC,” Tech. Rep. COD(2008)0016, Official Journal of the European Union, 2008. View at Google Scholar