Table of Contents
Journal of Catalysts
Volume 2013, Article ID 364275, 6 pages
http://dx.doi.org/10.1155/2013/364275
Research Article

Photocatalytic Degradation of Phenol Using a Nanocatalyst: The Mechanism and Kinetics

1Advanced Materials Technology Center, Singapore Polytechnic, S139651, Singapore
2School of Chemical and Life Sciences, Singapore Polytechnic, S139651, Singapore

Received 10 August 2012; Accepted 18 September 2012

Academic Editor: Jianqin Zhuang

Copyright © 2013 Y. Tao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Yan, W. Jianping, B. Jing, W. Daoquan, and H. Zongding, “Phenol biodegradation by the yeast Candida tropicalis in the presence of m-cresol,” Biochemical Engineering Journal, vol. 29, no. 3, pp. 227–234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. C. S. Turchi and D. F. Ollis, “Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack,” Journal of Catalysis, vol. 122, no. 1, pp. 178–192, 1990. View at Google Scholar · View at Scopus
  3. A. Mandal, K. Ojha, A. K. De, and S. Bhattacharjee, “Removal of catechol from aqueous solution by advanced photo-oxidation process,” Chemical Engineering Journal, vol. 102, no. 2, pp. 203–208, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Barták, P. Frnková, and L. Čáp, “Determination of phenols using simultaneous steam distillation-extraction,” Journal of Chromatography A, vol. 867, no. 1-2, pp. 281–287, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Brossa, E. Pocurull, F. Borrull, and R. M. Marcé, “A rapid method for determining phenolic endocrine disrupters in water samples,” Chromatographia, vol. 56, no. 9-10, pp. 573–576, 2002. View at Google Scholar · View at Scopus
  6. I. Rodríguez, M. P. Llompart, and R. Cela, “Solid-phase extraction of phenols,” Journal of Chromatography A, vol. 885, no. 1-2, pp. 291–304, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Wissiack and E. Rosenberg, “Universal screening method for the determination of US Environmental Protection Agency phenols at the lower ng l−1 level in water samples by on-line solid-phase extraction-high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry within a single run,” Journal of Chromatography A, vol. 963, no. 1-2, pp. 149–157, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Canosa, I. Rodriguez, E. Rubí, and R. Cela, “Optimization of solid-phase microextraction conditions for the determination of triclosan and possible related compounds in water samples,” Journal of Chromatography A, vol. 1072, no. 1, pp. 107–115, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. N. Sarrión, F. J. Santos, and M. T. Galceran, “Determination of chlorophenols by solid-phase microextraction and liquid chromatography with electrochemical detection,” Journal of Chromatography A, vol. 947, no. 2, pp. 155–165, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. E. González-Toledo, M. D. Prat, and M. F. Alpendurada, “Solid-phase microextraction coupled to liquid chromatography for the analysis of phenolic compounds in water,” Journal of Chromatography A, vol. 923, no. 1-2, pp. 45–52, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Peñalver, E. Pocurull, F. Borrull, and R. M. Marcé, “Solid-phase microextraction coupled to high-performance liquid chromatography to determine phenolic compounds in water samples,” Journal of Chromatography A, vol. 953, no. 1-2, pp. 79–87, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. O. Jáuregui, E. Moyano, and M. T. Galceran, “Capillary electrophoresis-electrospray ion-trap mass spectrometry for the separation of chlorophenols,” Journal of Chromatography A, vol. 896, no. 1-2, pp. 125–133, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Morales and R. Cela, “Highly selective and efficient determination of US Environmental Protection Agency priority phenols employing solid-phase extraction and non-aqueous capillary electrophoresis,” Journal of Chromatography A, vol. 896, no. 1-2, pp. 95–104, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Zhao and H. K. Lee, “Determination of phenols in water using liquid phase microextraction with back extraction combined with high-performance liquid chromatography,” Journal of Chromatography A, vol. 931, no. 1-2, pp. 95–105, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. J. F. Liu, X. Liang, Y. G. Chi et al., “High performance liquid chromatography determination of chlorophenols in water samples after preconcentration by continuous flow liquid membrane extraction on-line coupled with a precolumn,” Analytica Chimica Acta, vol. 487, no. 2, pp. 129–135, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. N. G. Simões, V. V. Cardoso, E. Ferreira, M. J. Benoliel, and C. M. M. Almeida, “Experimental and statistical validation of SPME-GC-MS analysis of phenol and chlorophenols in raw and treated water,” Chemosphere, vol. 68, no. 3, pp. 501–510, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Barták and L. Čáp, “Determination of phenols by solid-phase microextraction,” Journal of Chromatography A, vol. 767, no. 1-2, pp. 171–175, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Sanchez-Prado, M. Lores, M. Llompart, C. Garcia-Jares, M. Lourido, and R. Cela, “Further solid-phase microextraction-gas chromatography-mass spectrometry applications: “On-fibre” and aqueous photodegradation of nitro musks,” Journal of Chromatography A, vol. 1048, no. 1, pp. 73–80, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Lores, M. Llompart, R. González-García, C. González-Barreiro, and R. Cela, “Photolysis of polychlorinated biphenyls by solid-phase microextraction: “On-fibre” versus aqueous photodegradation,” Journal of Chromatography A, vol. 963, no. 1-2, pp. 37–47, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. V. R. Hebert, C. Hoonhout, and G. C. Miller, “Use of stable tracer studies to evaluate pesticide photolysis at elevated temperatures,” Journal of Agricultural and Food Chemistry, vol. 48, no. 5, pp. 1916–1921, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Guillard, P. Théron, P. Pichat, and C. Pétrier, “Evaluation of 1-octanol degradation by photocatalysis and ultrasound using SPME,” Water Research, vol. 36, no. 17, pp. 4263–4272, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Ito, T. N. Murakami, P. Comte et al., “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films, vol. 516, no. 14, pp. 4613–4619, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Sánchez-Prado, M. Lores, M. Llompart, C. García-Jares, J. M. Bayona, and R. Cela, “Natural sunlight and sun simulator photolysis studies of tetra- to hexa-brominated diphenyl ethers in water using solid-phase microextraction,” Journal of Chromatography A, vol. 1124, no. 1-2, pp. 157–166, 2006. View at Publisher · View at Google Scholar · View at Scopus