Table of Contents
Journal of Catalysts
Volume 2013, Article ID 685063, 10 pages
http://dx.doi.org/10.1155/2013/685063
Research Article

Influence of the Incorporation of Transition Metals on the Basicity of Mg,Al-Mixed Oxides and on Their Catalytic Properties for Transesterification of Vegetable Oils

1UERJ, Instituto de Química, Programa de Pós-graduação em Engenharia Química, Rua São Francisco Xavier, 524, Maracanã, 20550-900 Rio de Janeiro, RJ, Brazil
2INPI, Rua Mayrink Veiga, 9, Centro, 20090-910 Rio de Janeiro, RJ, Brazil
3CENPES/PETROBRAS, PDAB/CB, Avenida Horacio Macedo, 950, Cidade Universitária, 21941-915 Rio de Janeiro, RJ, Brazil

Received 27 December 2012; Revised 11 March 2013; Accepted 14 March 2013

Academic Editor: Mohammed M. Bettahar

Copyright © 2013 Paula M. Veiga et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Cavani, F. Trifirò, and A. Vaccari, “Hydrotalcite-type anionic clays: preparation, properties and applications,” Catalysis Today, vol. 11, no. 2, pp. 173–301, 1991. View at Google Scholar · View at Scopus
  2. D. Tichit, M. H. Lhouty, A. Guida et al., “Textural properties and catalytic activity of hydrotalcites,” Journal of Catalysis, vol. 151, no. 1, pp. 50–59, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Di Cosimo, V. K. Diez, M. Xu et al., “Structure and surface and catalytic properties of Mg-Al basic oxides,” Journal of Catalysis, vol. 178, no. 2, pp. 499–510, 1998. View at Google Scholar
  4. A. Corma, S. Iborra, J. Primo, and F. Rey, “One-step synthesis of citronitril on hydrotalcite derived base catalysts,” Applied Catalysis A, vol. 114, no. 2, pp. 215–225, 1994. View at Google Scholar · View at Scopus
  5. M. J. Climent, A. Corma, S. Iborra, and J. Primo, “Base catalysis for fine chemicals production: claisen-schmidt condensation on zeolites and hydrotalcites for the production of chalcones and flavanones of pharmaceutical interest,” Journal of Catalysis, vol. 151, no. 1, pp. 60–66, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. M. J. Climent, A. Corma, S. Iborra, K. Epping, and A. Velty, “Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures,” Journal of Catalysis, vol. 225, no. 2, pp. 316–326, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. C. N. Pérez, C. A. Pérez, C. A. Henriques et al., “Hydrotalcites as precursors for Mg, Al-mixed oxides used as catalysts on the aldol condensation of citral with acetone,” Applied Catalysis A, vol. 272, no. 1-2, pp. 229–240, 2004. View at Google Scholar
  8. C. O. Veloso, C. A. Henriques, A. G. Dias, and J. L. F. Monteiro, “Condensation of glyceraldehyde acetonide and acetone over basic catalysts,” Catalysis Today, vol. 107-108, pp. 294–301, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. L. Shumaker, C. Crofcheck, S. A. Tackett et al., “Biodiesel synthesis using calcined layered double hydroxide catalysts,” Applied Catalysis B, vol. 82, no. 1-2, pp. 120–130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. W. M. Antunes, C. D. O. Veloso, and C. A. Henriques, “Transesterification of soybean oil with methanol catalyzed by basic solids,” Catalysis Today, vol. 133-135, no. 1–4, pp. 548–554, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Crabbe, C. Nolasco-Hipolito, G. Kobayashi, K. Sonomoto, and A. Ishizaki, “Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties,” Process Biochemistry, vol. 37, no. 1, pp. 65–71, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. H. J. Kim, B. S. Kang, M. J. Kim et al., “Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst,” Catalysis Today, vol. 93-95, pp. 315–320, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Arzamendi, I. Campo, E. Arguiñarena, M. Sánchez, M. Montes, and L. M. Gandía, “Synthesis of biodiesel from sunflower oil with silica-supported NaOH catalysts,” Journal of Chemical Technology and Biotechnology, vol. 83, no. 6, pp. 862–870, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Leclercq, A. Finiels, and C. Moreau, “Transesterification of rapeseed oil in the presence of basic zeolites and related solid catalysts,” Journal of the American Oil Chemists' Society, vol. 78, no. 11, pp. 1161–1165, 2006. View at Google Scholar · View at Scopus
  15. W. Xie, H. Peng, and L. Chen, “Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil,” Journal of Molecular Catalysis A, vol. 246, no. 1-2, pp. 24–32, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Di Serio, M. Ledda, M. Cozzolino, G. Minutillo, R. Tesser, and E. Santacesaria, “Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts,” Industrial and Engineering Chemistry Research, vol. 45, no. 9, pp. 3009–3014, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Siano, M. Nastasi, E. Santacesaria et al., “Process for producing esters from vegetable oils or animal fats using heterogeneous catalysts,” PCT Application No. WO2006/050925, 2006. View at Google Scholar
  18. E. Li, Z. P. Xu, and V. Rudolph, “MgCoAl-LDH derived heterogeneous catalysts for the ethanol transesterification of canola oil to biodiesel,” Applied Catalysis B, vol. 88, no. 1-2, pp. 42–49, 2009. View at Google Scholar
  19. A. K. Singh and S. D. Fernando, “Transesterification of soybean oil using heterogeneous catalysts,” Energy and Fuels, vol. 22, no. 3, pp. 2067–2069, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Yan, H. Lu, and B. Liang, “Supported CaO catalysts used in the transesterification of rapeseed oil for the purpose of biodiesel production,” Energy and Fuels, vol. 22, no. 1, pp. 646–651, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. Yang and W. Xie, “Soybean oil transesterification over zinc oxide modified with alkali earth metals,” Fuel Processing Technology, vol. 88, no. 6, pp. 631–638, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Y. Zeng, Z. Feng, X. Deng, and Y. Q. Li, “Activation of Mg-Al hydrotalcite catalysts for transesterification of rape oil,” Fuel, vol. 87, no. 13-14, pp. 3071–3076, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. G. S. Macala, A. W. Robertson, C. L. Johnson et al., “Transesterification catalysts from iron doped hydrotalcite-like precursors: solid bases for biodiesel production,” Catalysis Letters, vol. 122, no. 3-4, pp. 205–209, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. E. Palomares, J. M. López-Nieto, F. J. Lázaro, A. López, and A. Corma, “Reactivity in the removal of SO2 and NOx on Co/Mg/Al mixed oxides derived from hydrotalcites,” Applied Catalysis B, vol. 20, no. 4, pp. 257–266, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. T. J. B. Holland and S. A. T. Redfern, “Unit cell refinement from powder diffraction data: the use of regression diagnostics,” Mineralogical Magazine, vol. 61, no. 1, pp. 65–77, 1997. View at Google Scholar · View at Scopus
  26. ICDD PDF-2 Database, International Centre for Diffraction Data, Newton Square, Pa, USA, 1998.
  27. I. Pausch, H. H. Lohse, K. Schurmann, and R. Allmann, “Synthesis of disordered and Al-rich hydrotalcite-like compounds,” Clays & Clay Minerals, vol. 34, no. 5, pp. 507–510, 1986. View at Google Scholar · View at Scopus
  28. S. Velu, N. Shah, T. M. Jyothi, and S. Sivasanker, “Effect of manganese substitution on the physicochemical properties and catalytic toluene oxidation activities of Mg-Al layered double hydroxides,” Microporous and Mesoporous Materials, vol. 33, no. 1–3, pp. 61–75, 1999. View at Google Scholar · View at Scopus
  29. L. Chmielarz, P. Kuśtrowski, A. Rafalska-Łasocha, and R. Dziembaj, “Influence of Cu, Co and Ni cations incorporated in brucite-type layers on thermal behaviour of hydrotalcites and reducibility of the derived mixed oxide systems,” Thermochimica Acta, vol. 395, no. 1-2, pp. 225–236, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. J. S. Valente, J. Hernandez-Cortez, M. S. Cantu, G. Ferrat, and E. López-Salinas, “Calcined layered double hydroxides Mg-Me-Al (Me: Cu, Fe, Ni, Zn) as bifunctional catalysts,” Catalysis Today, vol. 150, no. 3-4, pp. 340–345, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. O. Pavel, D. Tichit, and I. Marcu, “Acido-basic and catalytic properties of transition-metal containing Mg-Al hydrotalcites and their corresponding mixed oxides,” Applied Clay Science, vol. 61, pp. 52–58, 2012. View at Google Scholar
  32. A. Gervasini, J. Fenyvesi, and A. Auroux, “Study of the acidic character of modified metal oxide surfaces using the test of isopropanol decomposition,” Catalysis Letters, vol. 43, no. 1-2, pp. 219–228, 1997. View at Google Scholar · View at Scopus
  33. D. Carriazo, C. Martín, and V. Rives, “An FT-IR study of the adsorption of isopropanol on calcined layered double hydroxides containing isopolymolybdate,” Catalysis Today, vol. 126, no. 1-2, pp. 153–161, 2007. View at Publisher · View at Google Scholar · View at Scopus