Table of Contents
Journal of Catalysts
Volume 2013 (2013), Article ID 725970, 7 pages
http://dx.doi.org/10.1155/2013/725970
Research Article

Highly Dispersed in Porous Silica for CO Hydrogenation

Hunan Changling Petrochemical S&T Developing Co. Ltd., Yueyang 414012, China

Received 3 May 2013; Revised 1 September 2013; Accepted 5 September 2013

Academic Editor: Mohammed M. Bettahar

Copyright © 2013 Minglin Xiang and Juan Zou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Strukul, Ed., Catalytic Oxidations with Hydrogen Peroxide as Oxidant, vol. 9 of Catalysis by Metals, Kluwer Academic, Dordrecht, The Netherlands, 1991.
  2. C. W. Jones, Application of Hydrogen Peroxide and Derivatives, RSC Clean Technology Monographs, The Royal Society of Chemistry, Cambridge, UK, 1999.
  3. R. B. Levy and M. Boudart, “Platinum-like behavior of tungsten carbide in surface catalysis,” Science, vol. 181, no. 4099, pp. 547–549, 1973. View at Google Scholar · View at Scopus
  4. J. G. Chen, “Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization, and reactivities,” Chemical Reviews, vol. 96, no. 4, pp. 1477–1498, 1996. View at Publisher · View at Google Scholar
  5. J.-Y. Piquemal, C. Potvin, J.-M. Manoli, and G. Djéga-Mariadassou, “Synthesis and characterization of highly dispersed molybdenum carbides in mesoporous silica,” Catalysis Letters, vol. 92, no. 3-4, pp. 189–195, 2004. View at Google Scholar · View at Scopus
  6. J. Y. Piquemal, E. Briot, M. Vennat, J. M. Bregeault, G. Chottard, and J. M. Manoli, “Evidence for the presence of Mo(VI), W(VI) or Re(VII) species in silica-based materials. New approaches to highly dispersed oxo-species in mesoporoussilicates,” Chemical Communications, pp. 1195–1196, 1999. View at Google Scholar
  7. J. S. Lee, L. Volpe, F. H. Ribeiro, and M. Boudart, “Molybdenum carbide catalysts: II. Topotactic synthesis of unsupported powders,” Journal of Catalysis, vol. 112, no. 1, pp. 44–53, 1988. View at Publisher · View at Google Scholar
  8. T.-C. Xiao, A. P. E. York, H. Al-Megren, C. V. Williams, H.-T. Wang, and M. L. H. Green, “Preparation and characterisation of bimetallic cobalt and molybdenum carbides,” Journal of Catalysis, vol. 202, no. 1, pp. 100–109, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. X.-H. Wang, H.-L. Hao, M.-H. Zhang, W. Li, and K.-Y. Tao, “Synthesis and characterization of molybdenum carbides using propane as carbon source,” Journal of Solid State Chemistry, vol. 179, no. 2, pp. 538–543, 2006. View at Publisher · View at Google Scholar
  10. T.-C. Xiao, A. P. E. York, V. C. Williams et al., “Preparation of molybdenum carbides using butane and their catalytic performance,” Chemistry of Materials, vol. 12, no. 12, pp. 3896–3905, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Bouchy, S. B. Derouane-Abd Hamid, and E. G. Derouane, “A new route to the metastable FCC molybdenum carbide α-MoC1-x,” Chemical Communications, no. 2, pp. 125–126, 2000. View at Google Scholar · View at Scopus
  12. M. Xiang, D. Li, H. Qi, W. Li, B. Zhong, and Y. Sun, “Mixed alcohols synthesis from carbon monoxide hydrogenation over potassium promoted β-Mo2C catalysts,” Fuel, vol. 86, no. 9, pp. 1298–1303, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. G. S. Ranhotra, G. W. Haddix, A. T. Bell, and J. A. Reimer, “Catalysis over molybdenum carbides and nitrides. I. Catalyst characterization,” Journal of Catalysis, vol. 108, no. 1, pp. 24–39, 1987. View at Google Scholar · View at Scopus
  14. M. B. Ward, M. J. Lin, and J. H. Lunsford, “The oxidative dehydrogenation of ethane by nitrous oxide over molybdenum oxide supported on silica gel,” Journal of Catalysis, vol. 50, no. 2, pp. 306–318, 1977. View at Google Scholar · View at Scopus
  15. M. Yamada, J. Yasumaru, M. Houalla, and D. M. Hercules, “Distribution of molybdenum oxidation states in reduced Mo/Al2O3 catalysts. Correlation with benzene hydrogenation activity,” Journal of Physical Chemistry, vol. 95, no. 18, pp. 7037–7042, 1991. View at Google Scholar · View at Scopus
  16. T.-C. Liu, M. Forissier, G. Coudurier, and J. C. Védrine, “Properties of molybdate species supported on silica,” Journal of the Chemical Society, vol. 85, no. 7, pp. 1607–1618, 1989. View at Publisher · View at Google Scholar
  17. D. Wang, J. H. Lunsford, and M. P. Rosynek, “Catalytic conversion of methane to benzene over Mo/ZSM-5,” Topics in Catalysis, vol. 3, no. 3-4, pp. 289–297, 1996. View at Google Scholar · View at Scopus
  18. S. L. Matthews, V. Pons, and D. M. Heinekey, “Silane complexes of electrophilic metal centers,” Inorganic Chemistry, vol. 45, no. 16, pp. 6453–6459, 2006. View at Publisher · View at Google Scholar · View at Scopus