Table of Contents
Journal of Catalysts
Volume 2013 (2013), Article ID 819184, 8 pages
http://dx.doi.org/10.1155/2013/819184
Research Article

Ceric Ion Loaded MCM-41 Catalyzed Synthesis of Substituted Mono- and Bis-dihydropyrimidin-2(1H)-ones

1Department of Chemistry, Salem Sowdeswari College, Salem, Tamil Nadu 636010, India
2Department of Chemistry, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu 636011, India

Received 30 May 2013; Accepted 29 October 2013

Academic Editor: Adel A. Ismail

Copyright © 2013 Pullar Vadivel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Zhu and H. Bienayme, Multi-Component Reactions, John Wiley & Sons, Weinheim, Germany, 2005.
  2. A. Hasaninejad, A. Zare, M. Shekouhy, and J. Ameri Rad, “Catalyst-free one-pot four component synthesis of polysubstituted imidazoles in neutral ionic liquid 1-butyl-3-methylimidazolium bromide,” Journal of Combinatorial Chemistry, vol. 12, no. 6, pp. 844–849, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Zolfigol, A. Khazaei, A. R. Moosavi-Zare, A. Zare, and V. Khakyzadeh, “Rapid synthesis of 1-amidoalkyl-2-naphthols over sulfonic acid functionalized imidazolium salts,” Applied Catalysis A, vol. 400, no. 1-2, pp. 70–81, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Weber, K. Illgen, and M. Almstetter, “Discovery of new multicomponent reactions with combinatorial methods,” Synlett, vol. 3, pp. 366–374, 1999. View at Google Scholar
  5. H. Bienayme, C. Hulme, G. Oddon, and P. Schmitt, “Maximizing synthetic efficiency: multi-component transformations lead the way,” Chemistry A, vol. 6, no. 18, pp. 3321–3329, 2000. View at Publisher · View at Google Scholar
  6. N. K. Terrett, Combinatorial Chemistry, Oxford University Press, New York, NY, USA, 1998.
  7. A. Domling, “Recent developments in isocyanide based multicomponent reactions in applied chemistry,” Chemical Reviews, vol. 106, pp. 17–89, 2006. View at Google Scholar
  8. A. Kumar, S. Sharma, R. A. Maurya, and J. Sarkar, “Diversity oriented synthesis of benzoxanthene and benzochromene libraries via one-pot, three-component reactions and their anti-proliferative activity,” Journal of Combinatorial Chemistry, vol. 12, no. 1, pp. 20–24, 2010. View at Publisher · View at Google Scholar
  9. P. Biginelli, “Derivati aldeiduredici degli eteri acetil-e dossal-acetico,” Gazzetta Chimica Italiana, vol. 23, pp. 360–416, 1893. View at Google Scholar
  10. C. O. Kappe, “Biologically active dihydropyrimidones of the Biginelli-type—a literature survey,” European Journal of Medicinal Chemistry, vol. 35, no. 12, pp. 1043–1052, 2000. View at Publisher · View at Google Scholar
  11. E. W. Hurst and R. Hull, “Two new synthetic substances active against viruses of the psittacosis-lymphogranuloma-trachoma group,” Journal of Medicinal and Pharmaceutical Chemistry, vol. 3, no. 2, pp. 215–229, 1961. View at Publisher · View at Google Scholar
  12. M. Ashok, B. S. Holla, and N. S. Kumari, “Convenient one pot synthesis of some novel derivatives of thiazolo[2,3-b]dihydropyrimidinone possessing 4-methylthiophenyl moiety and evaluation of their antibacterial and antifungal activities,” European Journal of Medicinal Chemistry, vol. 42, no. 3, pp. 380–385, 2007. View at Publisher · View at Google Scholar
  13. S. W. Fewell, C. M. Smith, M. A. Lyon et al., “Small molecule modulators of endogenous and co-chaperone-stimulated Hsp70 ATPase activity,” Journal of Biological Chemistry, vol. 279, no. 49, pp. 51131–51140, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. C. I. Carswell, G. L. Plosker, and B. Jarvis, “Rosuvastatin,” Drugs, vol. 62, no. 14, pp. 2075–2085, 2002. View at Google Scholar · View at Scopus
  15. E. H. Hu, D. R. Silder, and U. H. Dolling J, “Unprecedented catalytic three component one-pot condensation reaction:  an efficient synthesis of 5-alkoxycarbonyl-4-aryl-3,4-dihydropyrimidin-2(1H)-ones,” The Journal of Organic Chemistry, vol. 63, no. 10, pp. 3454–3457, 1998. View at Publisher · View at Google Scholar
  16. Y. Ma, C. T. Qian, L. M. Wang, and M. Yang, “Lanthanide triflate catalyzed biginelli reaction. One-pot synthesis of dihydropyrimidinones under solvent-free conditions,” The Journal of Organic Chemistry, vol. 65, no. 12, pp. 3864–3868, 2000. View at Publisher · View at Google Scholar
  17. A. Brindban and J. U. Jana, “Indium (III) chloride-catalyzed one-pot synthesis of dihydropyrimidinones by a three-component coupling of 1,3-dicarbonyl compounds, aldehydes, and urea: an improved procedure for the biginelli reaction,” The Journal of Organic Chemistry, vol. 65, no. 19, pp. 6270–6272, 2000. View at Publisher · View at Google Scholar
  18. G. Salitha, K. B. Reddy, and J. S. Yadav, “Vanadium (III) chloride catalyzed Biginelli condensation: solution phase library generation of dihydropyrimidin-(2H)-ones,” Tetrahedron Letters, vol. 44, no. 34, pp. 6497–6499, 2003. View at Publisher · View at Google Scholar
  19. M. Gohain, D. Prajapati, and J. S. Sandhu, “A novel cu-catalysed three-component one-pot synthesis of dihydropyrimidin-2(1H)-ones using microwaves under solvent-free conditions,” Synlett, no. 2, pp. 235–238, 2004. View at Google Scholar · View at Scopus
  20. G. Maiti, P. Kundu, and C. Guin, “One-pot synthesis of dihydropyrimidinones catalysed by lithium bromide: an improved procedure for the biginelli reaction,” Tetrahedron Letters, vol. 44, no. 13, pp. 2757–2758, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. C. V. Reddy, M. Mahesh, P. V. K. Raju, T. R. Babu, and V. V. N. Reddy, “Zirconium(IV) chloride catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones,” Tetrahedron Letters, vol. 43, no. 14, pp. 2657–2659, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. J. S. Yadav, B. V. Subba Reddy, R. Srinivas, C. Venugopal, and T. Ramalingam, “LiClO4-catalyzed one-pot synthesis of dihydropyrimidinones: an improved protocol for Biginelli reaction,” Synthesis, no. 9, pp. 1341–1345, 2001. View at Google Scholar · View at Scopus
  23. A. Dondoni and A. Massi, “Synthetic studies toward the microtubule-stabilizing agent laulimalide: synthesis of the C1-C14 fragment,” Tetrahedron Letters, vol. 42, no. 5, pp. 797–800, 2001. View at Publisher · View at Google Scholar
  24. T. Jin, S. Zhang, and T. Li, “p-Toluenesulfonic acid-catalyzed efficient synthesis of dihydropyrimidines: improved high yielding protocol for the biginelli reaction,” Synthetic Communications, vol. 32, no. 12, pp. 1847–1851, 2002. View at Publisher · View at Google Scholar
  25. P. Salehi, M. Dabiri, M. A. Zolfigol, and M. A. Bodaghi Fard, “Silica sulfuric acid: an efficient and reusable catalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones,” Tetrahedron Letters, vol. 44, no. 14, pp. 2889–2891, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Tu, F. Fang, S. Zhu, T. Li, X. Zhang, and Q. Zhuang, “A new biginelli reaction procedure using potassium hydrogen sulfate as the promoter for an efficient synthesis of 3,4-dihydropyrimidin-2(1H)-one,” Synlett, no. 3, pp. 537–539, 2004. View at Google Scholar · View at Scopus
  27. F. Bigi, S. Carloni, B. Frullanti, R. Maggi, and G. Sartori, “A revision of the biginelli reaction under solid acid catalysis. Solvent-free synthesis of dihydropyrimidines over montmorillonite KSF,” Tetrahedron Letters, vol. 40, no. 17, pp. 3465–3468, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Tajbakhsh, B. Mohajerani, M. M. Heravi, and A. N. Ahmadi, “Natural HEU type zeolite catalyzed Biginelli reaction for the synthesis of 3,4-dihydropyrimidin-2(1H) one derivatives,” Journal of Molecular Catalysis A, vol. 236, no. 1-2, pp. 216–219, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Radha Rani, N. Srinivas, M. Radha Kishan, S. J. Kulkarni, and K. V. Raghavan, “Zeolite-catalyzed cyclocondensation reaction for the selective synthesis of 3,4-dihydropyrimidin-2(1H)-ones,” Green Chemistry, vol. 3, no. 6, pp. 305–306, 2001. View at Publisher · View at Google Scholar · View at Scopus