Table of Contents
Journal of Ceramics
Volume 2013 (2013), Article ID 261914, 6 pages
http://dx.doi.org/10.1155/2013/261914
Research Article

Effect of Processing on Synthesis and Dielectric Behavior of Bismuth Sodium Titanate Ceramics

1Department of Physics and Material Science & Engineering, Jaypee Institute of Information Technology, Noida 201307, India
2Electroceramics Group, Solid State Physics Laboratory, Defence Research and Development Organization (DRDO), Timarpur, Delhi 110054, India

Received 29 June 2012; Accepted 20 November 2012

Academic Editor: Baolin Wang

Copyright © 2013 Vijayeta Pal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Jaffe, W. R. Cook Jr., and H. Jaffe, Piezoelectric Ceramics, vol. 3, Academic Press, London, UK, 1971.
  2. M. Pecht, Y. Fukuda, and S. Rajagopal, “The impact of lead-free legislation exemptions on the electronics industry,” IEEE Transactions on Electronics Packaging Manufacturing, vol. 27, no. 4, pp. 221–232, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, “New ferroelectrics of complex composition,” Soviet Physics, Solid State, vol. 2, pp. 2651–2654, 1961. View at Google Scholar
  4. T. Takenaka, K. I. Maruyama, and K. Sakata, “(Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics,” Japanese Journal of Applied Physics, Part 1, vol. 30, no. 9, pp. 2236–2239, 1991. View at Google Scholar · View at Scopus
  5. A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, “Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems,” Japanese Journal of Applied Physics, Part 1, vol. 38, no. 9, pp. 5564–5567, 1999. View at Google Scholar · View at Scopus
  6. B. J. Chu, D. R. Chen, G. R. Li, and Q. R. Yin, “Electrical properties of Na1/2Bi1/2TiO3-BaTiO3 ceramics,” Journal of the European Ceramic Society, vol. 22, no. 13, pp. 2115–2121, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Pookmanee, G. Rujijanagul, S. Ananta, R. B. Heimann, and S. Phanichphant, “Effect of sintering temperature on microstructure of hydrothermally prepared bismuth sodium titanate ceramics,” Journal of the European Ceramic Society, vol. 24, no. 2, pp. 517–520, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. Q. Xu, X. L. Chen, W. Chen, B. H. Kim, S. L. Xu, and M. Chen, “Structure and electrical properties of (Na0.5Bi0.5)1-x Bax TiO3 ceramics made by a citrate method,” Journal of Electroceramics, vol. 21, no. 1–4, pp. 617–620, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. D. L. West and D. A. Payne, “Preparation of 0.95Bi1/2Na1/2TiO3·0.05BaTiO3 ceramics by an aqueous citrate-gel route,” Journal of the American Ceramic Society, vol. 86, no. 1, pp. 192–194, 2003. View at Google Scholar · View at Scopus
  10. J. G. Hou, Y. F. Qu, W. B. Ma, and D. Shan, “Synthesis and piezoelectric properties of (Na0.5Bi0.5)0.94Ba0.06TiO3 ceramics prepared by sol-gel auto-combustion method,” Journal of Materials Science, vol. 42, no. 16, pp. 6787–6791, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Hao, X. Wang, R. Chen, and L. Li, “Synthesis of (Bi0.5Na0.5)TiO3 nanocrystalline powders by stearic acid gel method,” Materials Chemistry and Physics, vol. 90, no. 2-3, pp. 282–285, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. A. P. Singh, S. K. Mishra, D. Pandey, C. D. Prasad, and R. Lal, “Low-temperature synthesis of chemically homogeneous lead zirconate titanate (PZT) powders by a semi-wet method,” Journal of Materials Science, vol. 28, no. 18, pp. 5050–5055, 1993. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Kitagawa, T. Toyoda, K. Kitagawa, and T. Yamamoto, “(Bi1/2Na1/2)TiO3 additive effect for improved piezoelectric and mechanical properties in PZT ceramics,” Journal of Materials Science, vol. 38, no. 10, pp. 2241–2245, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Fukuchi, T. Kimura, T. Tani, T. Takeuch, and Y. Saito, “Effect of potassium concentration on the grain orientation in bismuth sodium potassium titanate,” Journal of the American Ceramic Society, vol. 85, no. 6, pp. 1461–1466, 2002. View at Google Scholar · View at Scopus
  15. N. Chaiyo, A. Ruangphanit, R. Muanghlua, S. Niemcharoen, B. Boonchom, and N. Vittayakorn, “Synthesis of potassium niobate (KNbO3) nano-powder by a modified solid-state reaction,” Journal of Materials Science, vol. 46, no. 6, pp. 1585–1590, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallographica, vol. 32, pp. 751–767, 1976. View at Google Scholar
  17. K. Uchino and S. Nomura, “Critical exponents of the dielectric constants in diffused-phase-transition crystals,” Ferroelectrics Letters Section, vol. 44, no. 3, pp. 55–61, 1982. View at Google Scholar