Table of Contents
Journal of Ceramics
Volume 2013, Article ID 323018, 4 pages
http://dx.doi.org/10.1155/2013/323018
Research Article

Basic Elastic Properties Predictions of Cubic Cerium Oxide Using First-Principles Methods

Glenn Research Center, National Aeronautics and Space Administration, 21000 Brookpark Road, Cleveland, OH 44135, USA

Received 29 May 2012; Accepted 11 June 2012

Academic Editor: Young-Wook Kim

Copyright © 2013 Jon C. Goldsby. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. van de Krol and H. L. Tuller, “Electroceramics—the role of interfaces,” Solid State Ionics, vol. 150, no. 1-2, pp. 167–179, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Ramamoorthy, P. K. Dutta, and S. A. Akbar, “Oxygen sensors: materials, methods, designs and applications,” Journal of Materials Science, vol. 38, no. 21, pp. 4271–4282, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Ozawa, “Role of cerium-zirconium mixed oxides as catalysts for car pollution: a short review,” Journal of Alloys and Compounds, vol. 277, pp. 886–890, 1998. View at Google Scholar · View at Scopus
  4. G. Eranna, B. C. Joshi, D. P. Runthala, and R. P. Gupta, “Oxide materials for development of integrated gas sensors—a comprehensive review,” Critical Reviews in Solid State and Materials Sciences, vol. 29, no. 3-4, pp. 111–188, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M. D. Segall, P. J. D. Lindan, M. J. Probert et al., “First-principles simulation: ideas, illustrations and the CASTEP code,” Journal of Physics, vol. 14, no. 11, pp. 2717–2744, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, no. 18, pp. 3865–3868, 1996. View at Google Scholar · View at Scopus
  7. J. P. Perdew, A. Ruzsinszky, G. I. Csonka et al., “Restoring the density-gradient expansion for exchange in solids and surfaces,” Physical Review Letters, vol. 100, no. 13, Article ID 136406, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Paier, M. Marsman, and G. Kresse, “Why does the B3LYP hybrid functional fail for metals?” Journal of Chemical Physics, vol. 127, no. 2, Article ID 024103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Robertson, K. Xiong, and S. J. Clark, “Band structure of functional oxides by screened exchange and the weighted density approximation,” Physica Status Solidi B, vol. 243, no. 9, pp. 2054–2070, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. G. J. Ackland, M. C. Warren, and S. J. Clark, “Practical methods in ab initio lattice dynamics,” Journal of Physics, vol. 9, no. 37, pp. 7861–7872, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. E. A. Kümmerle and G. Heger, “The Structures of C-Ce2O3+δ, Ce7O12, and Ce11O20,” Journal of Solid State Chemistry, vol. 147, no. 2, pp. 485–500, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Wuilloud, B. Delley, W. D. Schneider, and Y. Baer, “Spectroscopic evidence for localized and extended f-symmetry states in CeO2,” Physical Review Letters, vol. 53, no. 2, pp. 202–205, 1984. View at Publisher · View at Google Scholar · View at Scopus
  13. D. R. Mullins, S. H. Overbury, and D. R. Huntley, “Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces,” Surface Science, vol. 409, no. 2, pp. 307–319, 1998. View at Google Scholar · View at Scopus
  14. C. W. Chen and M. H. Lee, “Ab initio calculations of dimensional and adsorbate effects on the workfunction of single-walled carbon nanotube,” Diamond and Related Materials, vol. 12, no. 3–7, pp. 565–571, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. D. M. Han, X. J. Liu, S. H. Lv, H. P. Li, and J. A. Meng, “Elastic properties of cubic perovskite BaRuO3 from first-principles calculations,” Physica B, vol. 405, no. 15, pp. 3117–3119, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. G. V. Sin'ko and N. A. Smirnov, “Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure,” Journal of Physics, vol. 14, no. 29, pp. 6989–7005, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Gerward, J. S. Olsen, L. Petit, G. Vaitheeswaran, V. Kanchana, and A. Svane, “Bulk modulus of CeO2 and PrO2—an experimental and theoretical study,” Journal of Alloys and Compounds, vol. 400, no. 1-2, pp. 56–61, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Tvergaard and J. W. Hutchinson, “Microcracking in ceramics induced by thermal-expansion or elastic-anisotropy,” Journal of the American Ceramic Society, vol. 71, no. 3, pp. 157–166, 1988. View at Google Scholar · View at Scopus
  19. G. Burns, Solid State Physics, Academic Press, San Diego, Calif, USA, 1985.