Table of Contents
Journal of Ceramics
Volume 2013 (2013), Article ID 370603, 4 pages
http://dx.doi.org/10.1155/2013/370603
Research Article

Grain Boundary Resistivity of Yttria-Stabilized Zirconia at 1400°C

1Materials Science and Engineering Department, North Carolina State University, Raleigh, NC 27695-7907, USA
2Materials and Metallurgy Department, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
3Department of Mechanical Engineering, Engineering Center, ECME 114, University of Colorado, Boulder, CO 80309-0427, USA

Received 5 November 2012; Accepted 13 February 2013

Academic Editor: Young-Wook Kim

Copyright © 2013 J. Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. C. Martin and M. L. Mecartney, “Grain boundary ionic conductivity of yttrium stabilized zirconia as a function of silica content and grain size,” Solid State Ionics, vol. 161, no. 1-2, pp. 67–79, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Hui, J. Roller, S. Yick et al., “A brief review of the ionic conductivity enhancement for selected oxide electrolytes,” Journal of Power Sources, vol. 172, no. 2, pp. 493–502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. H. Chu and M. A. Seitz, “The ac electrical behavior of polycrystalline ZrO2-CaO,” Journal of Solid State Chemistry, vol. 23, no. 3-4, pp. 297–314, 1978. View at Google Scholar · View at Scopus
  4. J. E. Bauerle, “Study of solid electrolyte polarization by a complex admittance method,” Journal of Physics and Chemistry of Solids, vol. 30, no. 12, pp. 2657–2670, 1969. View at Google Scholar · View at Scopus
  5. H. Näfe, “Ionic conductivity of ThO2 and ZrO2-based electrolytes between 300 and 2000 K,” Solid State Ionics, vol. 13, no. 3, pp. 255–263, 1984. View at Google Scholar · View at Scopus
  6. R. Gerhardt and A. Nowick, “Grain-boundary effect in ceria doped with trivalent cations. I, electrical measurements,” Journal of the American Ceramic Society, vol. 69, no. 9, pp. 641–646, 1986. View at Google Scholar
  7. J. MacDonald, Impedance Spectroscopy: Emphasizing Materials and Systems, John Wiley & Sons, New York, NY, USA, 1987.
  8. D. Yang, R. Raj, and H. Conrad, “Enhanced sintering rate of zirconia (3Y-TZP) through the effect of a weak dc electric field on grain growth,” Journal of the American Ceramic Society, vol. 93, no. 10, pp. 2935–2937, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. H. Han and D. Y. Kim, “Analysis of the proportionality constant correlating the mean intercept length to the average grain size,” Acta Metallurgica Et Materialia, vol. 43, no. 8, pp. 3185–3188, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. S. P. S. Badwal, F. T. Ciacchi, and V. Zelizko, “The effect of alumina addition on the conductivity, microstructure and mechanical strength of zirconia—yttria electrolytes,” Ionics, vol. 4, no. 1-2, pp. 25–32, 1998. View at Google Scholar · View at Scopus
  11. T. Uchikoshi, Y. Sakka, and K. Hiraga, “Effect of silica doping on the electrical conductivity of 3 mol% yttria-stabilized tetragonal zirconia prepared by colloidal processing,” Journal of Electroceramics, vol. 4, no. 1, pp. 113–120, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Guo and J. Maier, “Grain boundary blocking effect in zirconia: a schottky barrier analysis,” Journal of the Electrochemical Society, vol. 148, no. 3, pp. E121–E126, 2001. View at Google Scholar · View at Scopus
  13. Y. Shiratori, F. Tietz, H. J. Penkalla, J. Q. He, Y. Shiratori, and D. Stöver, “Influence of impurities on the conductivity of composites in the system (3YSZ)1−x(MgO)x,” Journal of Power Sources, vol. 148, no. 1-2, pp. 32–42, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Ikeda, O. Sakurai, K. Uematsu, N. Mizutani, and M. Kato, “Electrical conductivity of Yttria-Stabilized zirconic single crystals,” Journal of Materials Science, vol. 18, pp. 32–42, 2005. View at Google Scholar
  15. J. D. Solier, I. Cachadina, and A. Dominguez-Rodriguez, “Ionic Conductivity of ZrO2-12 mol % Y2O3 single crystals,” Physical Review B, vol. 48, pp. 3704–3712, 1993. View at Google Scholar
  16. A. Pimenov, J. Ullrich, P. Lunkenheimer, A. Loidl, and C. H. Rüscher, “Ionic conductivity and relaxations in ZrO2-Y2O3 solid solutions,” Solid State Ionics, vol. 109, no. 1-2, pp. 111–118, 1998. View at Google Scholar · View at Scopus
  17. I. Kosacki, C. M. Rouleau, P. F. Becher, J. Bentley, and D. H. Lowndes, “Nanoscale effects on the ionic conductivity in highly textured YSZ thin films,” Solid State Ionics, vol. 176, no. 13-14, pp. 1319–1326, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Matsui, H. Yoshida, and Y. Ikuhara, “Grain-boundary structure and microstructure development mechanism in 2~8 mol% yttria-stabilized zirconia polycrystals,” Acta Materialia, vol. 56, no. 6, pp. 1315–1325, 2008. View at Publisher · View at Google Scholar