Table of Contents
Journal of Ceramics
Volume 2014, Article ID 618154, 6 pages
http://dx.doi.org/10.1155/2014/618154
Research Article

Alumina-Based Ceramics for Armor Application: Mechanical Characterization and Ballistic Testing

1Núcleo de Pesquisa em Materiais Cerâmicos e Vítreos (CERMAT), Programa de Pós-Graduação em Ciência e Engenharia de Materiais (PGMAT), Universidade Federal de Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil
2CMC Tecnologia, Avenida Roberto Galli 1220, 88845-000 Cocal do Sul, SC, Brazil
3Programa de Pós-Graduação em Ciência e Engenharia de Materiais (PPGCEM), Laboratório de Cerâmica Técnica (CerTec), Universidade do Extremo Sul Catarinense (UNESC), Avenida Universitária, 1105, 88806-000 Criciúma, SC, Brazil

Received 28 October 2013; Accepted 15 December 2013; Published 9 January 2014

Academic Editor: Shaomin Liu

Copyright © 2014 M. V. Silva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Yadav and G. Ravichandran, “Penetration resistance of laminated ceramic/polymer structures,” International Journal of Impact Engineering, vol. 28, no. 5, pp. 557–574, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Xavier and C. R. C. Costa, “Study on mechanical behavior of alumina plates under ballistic impact,” Cerâmica, vol. 30, no. 175, pp. 161–168, 1984. View at Google Scholar
  3. P. G. Karandikar, “A review of ceramics for armor applications,” in Advances in Ceramic Armor IV, vol. 29, pp. 163–175, The American Ceramic Society, 2009. View at Google Scholar
  4. R. E. Tressler, “An assessment of low cost manufacturing technology for advanced structural ceramics and its impact on ceramic armor,” Ceramic Transactions, vol. 134, pp. 451–462, 2002. View at Google Scholar
  5. R. Stevens and P. A. Evans, “Transformation toughening by polycrystalline zirconia,” Transactions and Journal of the British Ceramic Society, vol. 83, no. 1, pp. 18–31, 1984. View at Google Scholar · View at Scopus
  6. R. B. Heimann, Classic and Advanced Ceramics: From Fundamentals to Applications, Wiley-VCH, New York, NY, USA, 2010.
  7. C. A. O. Couto, Estudo de blindagem para proteção contra impactos de micrometeoróides em satélites artificiais [Mestrado em Engenharia e Tecnologia Espaciais/Materiais e Sensores], Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil, 20112011.
  8. “Matweb Material Property Data, Alumina, alpha Al2O3, 99. 5%,” http://www.matweb.com/search/PropertySearch.aspx.
  9. L. Neckel, Modelamento e simulação de impacto balístico em sistema cerâmica-metal [Mestrado em Ciência e Engenharia de Materiais], Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 20122012.
  10. M. L. Wilkins, “Mechanics of penetration and perforation,” International Journal of Engineering Science, vol. 16, no. 11, pp. 793–807, 1978. View at Google Scholar · View at Scopus
  11. W. Weibull, “A statistical distribution function of wide applicability,” Journal of Applied Mechanics, vol. 18, pp. 293–297, 1951. View at Google Scholar
  12. National Institute of Justice Standard, “Ballistic resistance of body armor,” Tech. Rep. NIJ-0101.06, 2008. View at Google Scholar
  13. North Atlantic Treaty Organization, “Standards for Ballistic protection for light armoured vehicles,” Stanag 4569, 2008. View at Google Scholar
  14. W. M. Kanno, Propriedades Mecânicas do Gesso de Alto Desempenho [Doutor em Ciência e Engenharia de Materiais], Área de Concentração, Desenvolvimento, Caracterização e Aplicação de Materiais, Universidade de São Paulo, São Carlos, Brazil, 2009 2009.