Table of Contents
Journal of Chaos
Volume 2013, Article ID 587548, 7 pages
http://dx.doi.org/10.1155/2013/587548
Research Article

Difficulties in Evaluating Lyapunov Exponents for Lie Governed Dynamics

1Ciclo Basico Comun, Catedra de Fisica, Universidad de Buenos Aires, Argentina and Laboratorio de Sistemas Complejos, FI-UBA, Argentina
2Instituto de Física La Plata-CCT-CONICET, Universidad Nacional de La Plata, C.C. 727, 1900 La Plata, Argentina
3Physics Department and IFISC-CSIC, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
4Laboratorio de Sistemas Complejos, FI-UBA, Argentina and GIDyCSI-Universidad Nacional de Lanús, Argentina

Received 26 February 2013; Revised 17 June 2013; Accepted 18 June 2013

Academic Editor: Svetoslav Nikolov

Copyright © 2013 C. M. Sarris et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics, Springer, New York, NY, USA, 1992.
  2. R. Bluemel and W. P. Reinhardt, Chaos in Atomic Physics, Cambridge University Press, Cambridge, Mass, USA, 1997.
  3. L. E. Ballentine, “Is semiquantum chaos real?” Physical Review E, vol. 63, no. 5, Article ID 056204, 7 pages, 2001. View at Publisher · View at Google Scholar
  4. G. Benettin, L. Galgani, and J.-M. Strelcyn, “Kolmogorov entropy and numerical experiments,” Physical Review A, vol. 14, no. 6, pp. 2338–2345, 1976. View at Publisher · View at Google Scholar · View at Scopus
  5. C. M. Sarris and A. N. Proto, “Generalized metric phase space for quantum systems and the uncertainty principle,” Physica A, vol. 377, no. 1, pp. 33–42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Porter, “Nonadiabatic dynamics in semiquantal physics,” Reports on Progress in Physics, vol. 64, no. 9, pp. 1165–1189, 2001. View at Publisher · View at Google Scholar
  7. R. Blumel and B. Esser, “Quantum chaos in the Born-Oppenheimer approximation,” Physical Review Letters, vol. 72, no. 23, pp. 3658–3661, 1994. View at Publisher · View at Google Scholar
  8. H. Schanz and B. Esser, “Mixed quantum-classical versus full quantum dynamics: coupled quasiparticle-oscillator system,” Physical Review A, vol. 55, no. 5, pp. 3375–3387, 1997. View at Google Scholar · View at Scopus
  9. A. M. Kowalski, A. Plastino, and A. N. Proto, “Semiclassical model for quantum dissipation,” Physical Review E, vol. 52, no. 1, pp. 165–177, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Ma and R. K. Yuan, “Semiquantum Chaos,” Journal of the Physical Society of Japan, vol. 66, no. 8, pp. 2302–2307, 1997. View at Publisher · View at Google Scholar
  11. A. M. Kowalski, M. T. Martin, J. Nuñez, A. Plastino, and A. N. Proto, “Quantitative indicator for semiquantum chaos,” Physical Review A, vol. 58, no. 3, pp. 2596–2599, 1998. View at Publisher · View at Google Scholar
  12. A. M. Kowalski, A. Plastino, and A. N. Proto, “A semiclassical statistical model for quantum dissipation,” Physica A, vol. 236, no. 3-4, pp. 429–447, 1997. View at Google Scholar · View at Scopus
  13. M. A. Porter and R. L. Liboff, “Vibrating quantum billiards on Riemannian manifolds,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 11, no. 9, pp. 2305–2315, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. T. C. Blum and H.-T. Elze, “Semiquantum chaos in the double well,” Physical Review E, vol. 53, no. 4, pp. 3123–3133, 1996. View at Google Scholar · View at Scopus
  15. L. L. Bonilla and F. Guinea, “Collapse of the wave packet and chaos in a model with classical and quantum degrees of freedom,” Physical Review A, vol. 45, no. 11, pp. 7718–7728, 1992. View at Publisher · View at Google Scholar · View at Scopus
  16. R. I. Cukier and M. Morillo, “Comparison between quantum and approximate semiclassical dynamics of an externally driven spin-harmonic oscillator system,” Physical Review A, vol. 61, no. 2, 4 pages, 2000. View at Publisher · View at Google Scholar
  17. A. K. Pattanayak and W. C. Schieve, “Semiquantal dynamics of fluctuations: ostensible quantum chaos,” Physical Review Letters, vol. 72, no. 18, pp. 2855–2858, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. Kowalski, M. T. Martin, J. Nuñez, A. Plastino, and A. N. Proto, “Semiquantum chaos and the uncertainty principle,” Physica A, vol. 276, no. 1, pp. 95–108, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. A. M. Kowalski, M. T. Martin, A. Plastino, A. N. Proto, and O. A. Rosso, “Wavelet statistical complexity analysis of the classical limit,” Physics Letters, Section A, vol. 311, no. 2-3, pp. 180–191, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Cooper, J. F. Dawson, D. Meredith, and H. Shepard, “Semiquantum chaos,” Physical Review Letters, vol. 72, no. 9, pp. 1337–1340, 1994. View at Google Scholar · View at Scopus
  21. A. M. Kowalski, A. Plastino, and A. N. Proto, “Classical limits,” Physics Letters, Section A, vol. 297, no. 3-4, pp. 162–172, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. C. M. Sarris and A. N. Proto, “Information entropy and nonlinear semiquantum dynamics,” International Journal of Bifurcation and Chaos, vol. 19, no. 10, pp. 3473–3484, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. M. Kowalski, M. T. Martin, A. Plastino, and A. N. Proto, “Classical limit and chaotic regime in a semi-quantum Hamiltonian,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 13, no. 8, pp. 2315–2325, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. C. M. Sarris, F. Caram, and A. N. Proto, “The uncertainty principle as invariant of motion for time-dependent Hamiltonians,” Physics Letters, Section A, vol. 324, no. 1, pp. 1–8, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Alhassid and R. D. Levine, “Entropy and chemical change. III. The maximal entropy (subject to constraints) procedure as a dynamical theory,” The Journal of Chemical Physics, vol. 67, no. 10, 1977. View at Publisher · View at Google Scholar
  26. Y. Alhassid and R. D. Levine, “Connection between the maximal entropy and the scattering theoretic analyses of collision processes,” Phys. Rev. A, vol. 18, no. 1, pp. 89–116, 1978. View at Publisher · View at Google Scholar
  27. D. Otero, A. Plastino, A. N. Proto, and G. Zannoli, “Ehrenfest theorem and information theory,” Physical Review A, vol. 26, no. 3, pp. 1209–1217, 1982. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Merzbaher, Quantum Mechanics, Wiley, 1963.
  29. W.-K. Tung, Group Theory in Physics, World Scientific Publishing, Singapore, 1985.
  30. W. Cheney and D. Kincaid, Métodos Numéricos y Computación, CENGAE Learning, Mexico, 2011.