Abstract

The hybrid density functional B3LYP is employed to map the molecular electrostatic potentials on the surfaces of twenty normal alkanes, (Cn H2n+2), n = 1-20. It is shown that gas-phase heats of formation of the alkanes can be represented quantitatively in terms of the potential, where a general equation of the heat of formation is introduced as a function of potentials' extrema, VS,min and VS,max with average absolute error of 0.028 kcal/mol and a standard deviation of 0.048 kcal/mol. This should be viewed as a success of the B3LYP functional and the molecular surface electrostatic potential as tools of chemistry. The predicted gas-phase heats of formation of thirty normal alkanes (n = 21-50) are reproduced and compared to their experimental counterparts when available.