Journal of Chemistry

Journal of Chemistry / 2010 / Article

Open Access

Volume 7 |Article ID 518723 | 8 pages |

Biological Active Cobalt(II) and Nickel(II) Complexes of 12-Membered Hexaaza [N6] Macrocyclic Ligand Synthetic and Spectroscopic Aspects

Received11 Dec 2009
Accepted07 Feb 2010


New cobalt(II) and nickel(II) complexes of 12-membered macrocyclic Schiff - base ligand containing thiosemicarbazone moiety as a part of ring have been prepared having general composition [MLX2] where M = Co(II) or Ni(II), L=3,4,9,10–tetra-2-furanyl-1,2,5,6,8,11- hexaazacyclododeca-7,12- dithione - 2,4,8,10 – tetraene, X = Cl-, NO3-, NCS-. The complexes have been characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, spectral (IR, electronic, EPR) techniques and thermal analysis. Spectroscopic studies suggested a six coordinated octahedral geometry for all the complexes. The IR spectra of complexes suggest that ligand is coordinated to the metal ion through its four imines nitrogen. Conductivity measurements supported the non electrolytic nature of the complexes. The antifungal activities of complexes have been studied against a number of pathogenic fungi under laboratory conditions. The complexes showed good antifungal results. Thermal analysis of reported complexes suggests the absence of water molecule either in or outside the coordination sphere.

Copyright © 2010 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

352 Views | 541 Downloads | 8 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.