Journal of Chemistry

Journal of Chemistry / 2010 / Article

Open Access

Volume 7 |Article ID 653512 | 6 pages | https://doi.org/10.1155/2010/653512

Utilization of m-Phenylenediamine-Furfural Resin for Removal of Cu(II) from Aqueous Solution-A Thermodynamic Study

Received28 Sep 2009
Accepted15 Nov 2009

Abstract

m-Phenylenediamine was condensed with furfural in absence of catalyst at room temperature. The produced m-phenylenediamine-furfural resin was used for the removal of Cu(II) from aqueous solution. The pH for the optimum removal of Cu(II) was 6. The negative values of Gibbs free energy at low concentration of Cu(II) (20, 30 ppm) indicative of the spontaneous adsorption process, while, at higher Cu(II) concentration (40,50 ppm) the positive and weak values of ∆G° indicate that the process is feasible but non spontaneous. The values of ∆H° were positive indicating that the sorption process is endothermic. On the other hand, the values of activation energy (Ea) were inconsistent with the values of ∆H° both are positive and lie in the range of physisorption. The entropy ∆S° of the process was positive indicative of the randomness of the Cu(II) ions at the solid / liquid interface. The values of sticking probability S* were less than one which indicate a preferable adsorption process and the mechanism is physisorption.

Copyright © 2010 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

281 Views | 523 Downloads | 0 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.