Table of Contents Author Guidelines Submit a Manuscript
E-Journal of Chemistry
Volume 8, Issue 4, Pages 1750-1764

Coordination Modes of a Schiff Base Derived from Substituted 2-Aminothiazole with Chromium(III), Manganese(II), Iron(II), Cobalt(II), Nickel(II) and Copper(II) Metal Ions: Synthesis, Spectroscopic and Antimicrobial Studies

Ambit Thakar,1 Krishnakant Joshi,2 Kishor Pandya,3 and Arvind Pancholi2

1Zydus Research Centre, Ahmedabad-382 210, India
2Department of Chemistry, Navjivan Science College, Dahod-389 151, India
3Sir P.T. Science College, Modasa-383 315, India

Received 9 November 2010; Accepted 21 January 2011

Copyright © 2011 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Transition metal complexes of Cr(III), Mn(II), Fe(II), Co(II), Ni(II) and Cu(II) metal ions with general stoichiometry [ML2.2H2O] and [ML3], where M= Mn(II), Cr(III), Fe(II), Co(II), Ni(II) and Cu(II), L= Schiff base derived from the condensation of 2-amino-4(4’-phenyl/methylphenyl)-5-methyl-thiazole with 4-acetyl-1(3-chloro phenyl)-3-methyl-2-pyrazoline-5-ones, have been synthesized and structurally characterized by elemental analysis, molar conductance measurements, magnetic susceptibility measurements and spectral techniques like IR, UV, 1H NMR, 13C NMR and Mass Spectra. All the complexes were found to be octahedral geometry. The ligand and its complexes have been screened for their antifungal and antibacterial activities against three fungi, i.e. Alternaria brassicae, Aspergillus niger and Fesarium oxysporum and two bacteria, i.e. Xanthomonas compestris and Pseudomonas aeruginosa.