Abstract

The red mud BaO-Na2CO3 sinter process can be used in combination with the Bayer process to recover sodium and aluminium from the red mud waste and direct it back to the process stream. This is facilitated by the high temperature reaction of BaO-Na2CO3 and De-silication product (Sodalite) (DSP) in the red mud to produce an insoluble di-barium silicate, barium titanate, barium ferrite and a soluble sodium aluminate. A variation of the red mud BaO-Na2CO3 sintering process using half the barium oxide of existing methods has been investigated. The barium to silicon ratio was reduced from 2 to 1 producing a sodium barium silicate (Na2BaSiO4) rather than the di-barium silicate (Ba2SiO4) insoluble phase produced in the existing BaO-Na2CO3 sinter method. Synthetic BaO-Na2CO3 sinter products were investigated to understand the phases produced during sintering at varying temperatures and the chemistry of extraction. The target phases and morphological behaviors of sinter products were seen in XRD and SEM and the highest extractions were produced from a sinter temperature of 1000 °C for 4 h. A two-stage (105 °C / 60 min, 105 °C / 240 min) water or caustic leaching process was found to be most effective for extraction. Sodium and aluminium extractions were 99% and 99.5% respectively. The experimental method devised was then used to treat red mud and the target phases were produced. An extraction of sodium and aluminium of 94% and 87% respectively was achieved. Silicon extractions were below 2%. Production benefits include sodium hydroxide savings, liquor burning, increased aluminium extraction and reduced cost of waste handling.